4f-LUMINESCENCE OF 3d-4f HETERONUCLEAR PORPHYRIN COMPLEXES
DOI:
https://doi.org/10.15421/jchemtech.v30i3.261538Keywords:
lanthanides; porphyrins; 4f-luminescence; sensitization; heteronuclear complexesAbstract
Porphyrin compounds with Nd(III), Yb(III) and Cu(II), Zn(II), Pd(II) were obtained on the basis of ditopic porphyrins, the structure of which allowed obtaining various heterometallic complexes. Specified f-metals were chosen due to the fact that the infrared luminescence of these metal ions can be sensitized by porphyrins, on the other hand, the presented d-metal ions have a very different effects on the porphyrin chromophore. Photosensitized 4f-luminescence in the near-infrared region and molecular fluorescence in the visible region of 3d-4f heteronuclear complexes are extremely sensitive to the nature of d- and f-metal ions. Thus, effective molecular fluorescence (quantum yield 4–11 %) is characteristic for the cases of free porphyrin cores and complexes with Zn(II). Moreover, these cases reveal three types of emission – fluorescence, phosphorescence and 4f-luminescence at the same time. We found out that the molecular fluorescence effectiveness and the values of its band maxima did not depend on the nature of the peripheral chelate fragments. Fluorescence of copper and palladium complexes is almost completely quenched, but Pd(II)-porphyrin serves as 4f-sensitizer in contrast to Cu(II)-porphyrin. The effect of oxygen on the luminescence of the complexes was considered. It was found that only Pd-Nd complexes are sensitive to its presence – deoxygenation led to 20 % enhancement of 4f-luminescence effectiveness.
References
Piccirillo, G., Maldonado-Carmona, N., Marques, D. L., Villandier, N., Calliste, C. A., Leroy-Lhez, S., Eusébio, M. E. S., Calvete, M. J. F., Pereira, M. M. (2022). Porphyrin@Lignin nanoparticles: Reusable photocatalysts for effective aqueous degradation of antibiotics. Catal. Today, In press. https://doi.org/10.1016/j.cattod.2022.09.009
Batinic-Haberle, I., Tovmasyan, A., Huang, Z., Duan, W., Du, L., Siamakpour-Reihani, S., Cao, Zh., Sheng, H., Spasojevic, I., Alvarez Secord, A. (2021). H2O2-Driven Anticancer Activity of Mn Porphyrins and the Underlying Molecular Pathways. Oxid. Med. Cell. Longev., 6653790. https://doi.org/10.1155/2021/6653790
Sen, P., Soy, R, Mgidlana, S., Mack, J., Nyokong, T. (2022). Light-driven antimicrobial therapy of palladium porphyrins and their chitosan immobilization derivatives and their photophysical-chemical properties. Dyes Pigments, 203, 110313.
https://doi.org/10.1016/j.dyepig.2022.110313
Teixeira, R., Vaz Serra, V., Botequim, D., Paulo, P. M. R., Andrade, S. M., Costa, S. M. B. (2021). Fluorescence Spectroscopy of Porphyrins and Phthalocyanines: Some Insights into Supramolecular Self-Assembly, Microencapsulation, and Imaging Microscopy. Molecules, 26(14), 4264.
https://doi.org/10.3390/molecules26144264
Hirohiko, H., Sung-Kil, L., Nagawa, Y., Hiratani, K. (2001). A Macrocyclic Effect on the Reduction of p-Quinones. Supramol. Chem., 13(6), 683–692. https://doi.org/10.1080/10610270108027498
Kingsbury, C. J., Senge, M. O. (2021). The shape of porphyrins. Coordin. Chem. Rev., 431, 213760. https://doi.org/10.1016/j.ccr.2020.213760
Bulach, V., Sguerra, F., Hosseini, M. W. (2012). Porphyrin lanthanide complexes for NIR emission. Coordin. Chem. Rev., 256(15–16), 1468–1478. https://doi.org/10.1016/j.ccr.2012.02.027
Chan Wai-Lun, Xie Chen, Lo Wai-Sum, Bünzli, J.-C. G., Wong Wai-Kwok, Wong Ka-Leung (2021). Lanthanide–tetrapyrrole complexes: synthesis, redox chemistry, photophysical properties, and photonic applications. Chem. Soc. Rev., 50(21), 12189–12257. https://doi.org/10.1039/c9cs00828d
Semenishyn, N. N., Smola, S. S., Efryushina, N. P., Rusakova, N. V. (2015). Spectral and Luminescence Properties of Lanthanide(III) Complexes with Porphyrins and Corroles with Varied Structure. Theor Exp Chem, 51(4), 224–229. https://doi.org/10.1007/s11237-015-9420-z
Beeby, A., Dickins, R. S., Fitzgerald, S., Govenlock, L. J., Maupin, C. L., Parker, D., Riehl, J. P., Siligardi, G., Williams, J. A. G. (2000). Porphyrin sensitization of circularly polarised near-IR lanthanide luminescence: enhanced emission with nucleic acid binding. Chem. Commun., (13), 1183–1184. https://doi.org/10.1039/b002452j
Min-Kook Nah, Jae Buem Oh, Hwan Kyu Kim, Kyong-Hoon Choi, Yong-Rok Kim, Jun-Gill Kang (2007). Photophysical Properties and Energy Transfer Pathway of Er(III) Complexes with Pt−Porphyrin and Terpyridine Ligands. J. Phys. Chem. A, 111(28), 6157–6164.
1021/jp0688512
Huimin Ren, Chao Liu, Wei Yang, Jianzhuang Jiang (2022). Sensitive and selective sensor based on porphyrin porous organic cage fluorescence towards copper ion. Dyes Pigments, 200, 110117. https://doi.org/10.1016/j.dyepig.2022.110117
Tisoco, I., Donatoni, M. C., Henrique Fernandes Vieira, V., De Toledo, J. R., Krambrock, K., Chaves, O. A., De Oliveira, K. T., Iglesias, B. A. (2022). Photophysical, photooxidation, and biomolecule-interaction of meso-tetra(thienyl)porphyrins containing peripheral Pt(ii) and Pd(ii) complexes. Insights for photodynamic therapy applications. Dalton Trans., 51(4), 1646–1657. https://doi.org/10.1039/d1dt03565g
Chahal, M. K., Liyanage, A., Alsaleh, A. Z., Karr, P. A., Hill, J. P., D'souza, F. (2021). Anion-enhanced excited state charge separation in a spiro-locked N-heterocycle-fused push-pull zinc porphyrin. Chem. Sci., 12(13), 4925–4930. https://doi.org/10.1039/d1sc00038a
Cotton, S. (2006). Lanthanide and Actinide Chemistry. Uppingham, John Wiley & Sons,Ltd.
Stel'makh, G. F., Tsvirko, M. P. (1983). Influence of the aggregated state and temperature on the spectral-fluorescent properties of Zn-tetraphenylporphin. J. Appl. Spectrosc., 39(3), 1041–1046. https://doi.org/10.1007/bf00659041
Kuznetsova, R. T., Ermolina, E. G., Gadirov, R. M., Mayer, G. V., Semenishin, N. N., Rusakova, N. V., Korovin, Yu V. (2010). Luminescence of metal complexes of chelate-substituted tetraphenylporphyrin. High Energy Chem., 44(2), 134–138. https://doi.org/10.1134/s0018143910020098
Kuznetsova, R. T., Ermolina, E. G., Gadirov, R. M., Mayer, G. V., Semenishin, N. N., Zhuravlev, S. A., Rusakova, N. V., Korovin, Yu. V. (2009). Luminescent characteristics of tetraphenylporphyrin and its derivatives with lutetium. Opt. Spectrosc., 106(5), 672–676. https://doi.org/10.1134/s0030400x09050087
Harriman, A. (1981). Luminescence of porphyrins and metalloporphyrins. Part 2.—Copper(II), chromium(III), manganese(III), iron(II) and iron(III) porphyrins. J. Chem. Soc. Farad. T. 1, 77(2), 369–377.
https://doi.org/10.1039/f19817700369
Venchikov, V., Tsvirko, M. (2000). Determination of intramolecular energy-transfer efficiency in ytterbium chelates. J. Appl. Spectrosc., 67(4), 745–750. https://doi.org/10.1007/bf02681315
Bhaumik, M. L., El Sayed, M. A. (1965). Mechanism and Rate of the Intramolecular Energy Transfer Process in Rare Earth Chelates. J. Chem. Phys., 42(2), 787–788.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Oles Honchar Dnipro National University
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).