POLYVINYLIDENE FLUORIDE BASED COMPOSITE ELECTROLYTES FOR LITHIUM-ION BATTERIES

Authors

DOI:

https://doi.org/10.15421/jchemtech.v30i4.262053

Keywords:

lithium-ion polymer batteries, ionic conductivity, composite polymer electrolyte, filler, films.

Abstract

Solid polymer electrolytes, which are currently replacing traditional liquid electrolytes, are currently considered as an important strategy in the development of lithium ion batteries that are safe and with high energy density. But poor ionic conductivity and weak mechanical characteristics have significantly limited the development of solid polymer electrolytes. To improve these characteristics six composite polymer electrolytes (CPEs) with a composition of PVDF-PEG-LiClO4-X and different fillers (where X = LiF, Ce2O3, Na2SO4, Li3PO4, MgO, LiH2PO4) were synthesized in this work. The optimal composition of the CPE and filler of PVDF-PEG-LiClO4-Li3PO4 has been determined (σ = 2,36·10-5 Ohm-1×cm-1.). The result of the filler concentration effect on the ionic conductivity of films was studied where optimal filler concentration of 5 % Li3PO4 had the highest ionic conductivity of
1.43
×10-4 Ohm-1·cm-1. The surface morphology, electrochemical and thermal stability of the obtained CPEs have been studied by various techniques. Investigation of physicochemical aspects of the effect of fillers on the solid polymer electrolytes properties will make it possible to derive the regularities and universal methods for obtaining effective separators that ensure stable operation of the battery.

References

Mukhametova, L. R., Akhmetova, I. G., Strielkovsky, V. (2019). Innovations in the field of energy storage. Power Equipment, Technol., 21, 4, 33–40. (In Russian).

Gediri, А. (2021). Renewable energy sources — a new energy revolution, Bulletin of the Peoples' Friendship University of Russia. Series: Economy, 29(1), 98–104. (In Russian).

Mentbayeva, A., Sukhishvili, S., Naizakarayev, M., Batyrgali, N., Seitzhan, Z., Bakenov, Z. (2021). Ultrathin clay-containing layer-by-layer separator coating enhances performance of lithium-sulfur batteries. Electrochimica Acta, 366, 137454.

Li, B., Sun, Z., Zhao, Y., Bakenov, Z. (2019). A Novel Hierarchically Porous Polypyrrole Sphere Modified Separator for Lithium-Sulfur Batteries. Polymers, 11(8), 1344. https://doi.org/10.3390/polym11081344

Li, Y., Wang, X., Liang, J., Wu, K., Xu, L., Wang, J. (2020). Design of a high performance zeolite/polyimide composite separator for lithium-ion batteries. Polymers, 12(4), 32244570. doi: 10.3390/polym12040764

Kosova, N. V. (2004). Highly dispersed cathode materials for lithium-ion batteries obtained using mechanical activation. Chemistry in the interests of sustainable development, 12, 349–354.

Li Ping, T., Mohd, H. B., Abdul, K. A. (2021). Development on Solid Polymer Electrolytes for Electrochemical Devices. Molecules. 26(21), 6499. doi: 10.3390/molecules26216499

Wei, Z., Ren, Y., Wang, M. (2020). Improving the Conductivity of Solid Polymer Electrolyte by Grain Reforming. Nanoscale Res Lett ., 15., 122, https://doi.org/10.1186/s11671-020-03355-4

Andreev, O. L., Druzhinin, K. V., Roh, S. W. (2009). Composite lithium-conducting polymer electrolytes based on PVDF- GFP copolymer and solid electrolyte Li1.3Al0.3Ti1.7(PO4)3. Electrochemical power engineering, 2, 76–81.

Qingjiang, Yu., Kecheng, J., Cuiling, Yu., Xianjin, Ch., Chuanjian, Zh., Yi, Yao., Bin, Jiang, Huijin, Long. (2021). Recent progress of composite solid polymer electrolytes for all-solid-state lithium metal batteries. Chinese Chemical Letters, 32, 9, 2659–2678 https://doi.org/10.1016/j.cclet.2021.03.032

Druzhinin, K. V., Andreev, O. L., Batalov, N. N. (2010). [Transport properties of composite materials based on a copolymer of vinylidene fluoride-hexafluoropropylene and lithium chloride crystallosolvate with dimethylformamide]. "Fundamental problems of energy conversion in lithium electrochemical systems": Materials of the XI International Conference, 245–249. (In Russian).

Kumar, A, Deka, M. (2010). Nanofibers: nanofiber reinforced composite polymer electrolyte membranes. InTech.

Baskakova, Yu. V., Yarmolenko, O. V., Efimov, O. N. (2012). Polymer gel electrolytes for lithium current sources. Advances in chemistry, 81, 367–380.

Kenessova, A. K., Seilkhanova, G. A., Kurman-bayeva, T. S., Ussipbekova, E. Z., Kurbatov, A. P. (2020). Solid polymer electrolytes for energy storage systems. Materials Today: Proceedings. – Elsevier Ltd, 31, 588–591.

Li, S., Zhang, W., Zheng, J., Lu, M., Song, H., Du, L. (2020). Inhibition of Polysulfide Shuttles in Li–S Batteries: Modified Separators and Solid‐State Electrolytes, Advanced Energy Materials, https://doi.org/10.1002/aenm.202000779

Panero, S., Scrosati, B., Greenbaum, S. G. (1992). Ionic conductivity and Li NMR study of poly(ethylene glycol) complexed with lithium salts. Electrochimica Acta, 37, 1533–1539.

Liu, S., Imanishi, N., Zhang, T., Hirano, A., Takeda, Y., Yamamoto, O., Yang, J. (2010). Effect of nano-silica filler in polymer electrolyte on Li dendrite formation in Li/poly(ethylene oxide)–Li(CF3SO2)2N/Li. Journal of Power Sources, 195, 6847–6853.

Laura, C., Merrill, Xi., Chelsea, Ch., Yiman, Zh., Hunter, O., Ford, K. L., Yubin, Zh., Guang, Y., Wang, Ya., Wang, Ya., Schaefer, Je. L. Dudney, N. J. (2020). Polymer–Ceramic Composite Electrolytes for Lithium Batteries: A Comparison between the Single-Ion-Conducting Polymer Matrix and Its Counterpart. ACS Appl. Energy Mater, 3, 8871–8881 https://doi.org/10.1021/acsaem.0c01358

Sanaz, K., Keryn, L. (2013). Effect of SiO2 on conductivity and structural properties of PEO–EMIHSO4 polymer electrolyte and enabled solid electrochemical capacitors. Electrochimica Acta, 103, 174–178.

Pandey, G. P., Hashmi, S. A., Agrawal, R. C. (2008). Hot-press synthesized polyethylene oxide based proton conducting nanocomposite polymer electrolyte dispersed with SiO2 nanoparticles. Solid State Ionics, 179, 543–549.

Yarmolenko, O. V., Khatmullina, K. G., Bogdanova L. M., Shuvalova, N. I., Javadyan, E. A., Marinin, A. A., Volkov, V. I. (2014). [Effect of the addition of TiO2 nanoparticles on the conductivity of mesh polymer electrolytes for lithium current sources]. Electrochemistry, 50, 377–386. (In Russian).

Sivets, M. V. (2016). [Chemical current sources. Actual problems of energy], 644–646. (In Russian).

Yu, M., Hynan, P., Jouanne, A., Yokochi, A. (2019). Current Li-Ion Battery Technologies in Electric Vehicles and Opportunities for Advancements. Energies, 12, 1074; doi:10.3390/en12061074

Arumugam Manthiram. An Outlook on Lithium Ion Battery Technology // ACS Cent. Sci. – 2017. – 3. – P. 1063-1069.

Zarubin D.P. (2017). [Physical Chemistry]. M.: Vyshaja shkola. (In Russian).

Shevchenko, V.G. (2010). [Fundamentals of physics of polymer composite materials]. M.: Vyshaja shkola. (In Russian).

Downloads

Published

2023-01-26