NMR SPECTRAL PARAMETERS OF THE SYSTEMS BASED ON AROMATIC POLYAMIDES: THE QUANTUM-CHEMICAL INTERPRETATION FOR THE SOLVATION EFFECTS OF MEDIUM

Authors

DOI:

https://doi.org/10.15421/jchemtech.v30i3.262860

Keywords:

ab initio calculations, NMR-spectrum, solvation energy, polarizable continuum method, Onsager solvation model

Abstract

Using the ab initio methods of quantum chemistry a detailed theoretical investigation for the basic parameters of proton magnetic resonance spectra has been carried out using the example of N-phenylbenzamide, which plays the role of a prototype for a monomeric chain of aromatic polyamides, in particular phenylon. Within the scope of this work, some features for the solvation effects of medium, which occur under the action of averaged influence of dimethylacetamide and dimethyl sulfoxide molecules, are considered without details of the structure for the first solvation shell of dimerized form of model compound. The obtained results are closely to the high affinity of the selected structural fragments of macromolecules in relation to the solvation effects of medium only in the case of using the polarizable continuum method. At the same time, the solvation energy is at least 52.5 kJ/mol, while the Onsager model shows a much smaller stabilizing effect, which does not exceed 4.5 kJ/mol. The results of calculations for the spectral characteristics of model system in vacuo as well as taking into account the effects of medium one, within the chosen level of theory are in good agreement with the data of this type obtained earlier and may be of fundamental importance from the point of view of the preliminary assessment for the affinity of individual sections of macromolecules in relation to the solvation effect of dipolar aprotic solvents.

Author Biography

Andrey V. Tokar, Dnipropetrovsk state agrarian-economic university

associate professor of department of chemistry

References

Hatada, K., Kitayama, T. (2004). NMR Spectroscopy of Polymers. Berlin-Heidelberg, Germany: Springer-Verlag. doi: 10.1007/978-3-662-08982-8

Brandolini, A. J., Hills, D. D. (2000). NMR Spectra of Polymers and Polymer Additives. Boca Raton, USA: CRC Press. doi: 10.1201/9781482293425

Krivdin, L. B. (2021). Computational NMR of Carbohydrates: Theoretical Background, Applications, and Perspectives. Molecules, 26(9), 2450. doi: 10.3390/molecules26092450

Ji, X., Gonnella, N. C., Xin, D. (2020). Deconvolution of fast exchange equilibrium states in NMR spectroscopy using virtual reference standards and probability theory. Org. Biomol. Chem., 18(35), 6927–6934. doi: 10.1039/D0OB01459A

Lacerda, E. G., Kamounah, F. S., Coutinho, K., Sauer, S. P. A., Hansen, P. E., Hammerich, O. (2018). Computational Prediction of 1H and 13C NMR Chemical Shifts for Protonated Alkylpyrroles: Electron Correlation and Not Solvation is the Salvation. ChemPhysChem., 20(1), 78–91. doi: 10.1002/cphc.201801066

Lauro, G., Das, P., Riccio, R. D., Reddy, S., Bifulco, G. (2020). DFT/NMR approach for the configuration assignment of groups of stereoisomers by the combination and comparison of experimental and predicted sets of data. J. Org. Chem., 85(5), 3297–3306. doi: 10.1021/acs.joc.9b03129

Shan, H., Wilson, W. K., Kamaric, E. (2020). NOESY and DFT-GIAO Calculations Reveal Pervasive Errors in C20 Configurations of Taraxastane-3,20-diols: Proposals to Improve NMR Structure Determinations. Org. Lett., 22(5), 1714–1719. doi: 10.1021/acs.orglett.9b04566

Andrade, D., Colherinhas, G. (2020). A6H polypeptide membranes: Molecular dynamics simulation, GIAO-DFT-NMR and TD-DFT spectroscopy analysis. J. Mol. Liq., 316, 113850. doi: 10.1016/j.molliq.2020.113850

Bukowicki, J., Wawer, A., Paradowska, K. (2015). Conformational Analysis of Gentiobiose Using Genetic Algorithm Search and GIAO DFT Calculations with 13C CPMAS NMR as a Verification Method. J. Carbohydr. Chem., 34(3), 145–162. doi: 10.1080/07328303.2015.1016230

Pierens, G. K., Venkatachalam, T. K., Reutens, D. C. (2017). NMR and DFT investigations of structure of colchicine in various solvents including density functional theory calculations. Sci. Rep., 7, 5605. doi: 10.1038/s41598-017-06005-5

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, Jr., J. A., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., & Pople, J. A. (2004). Gaussian 03 (Revision E.01) [Computer software]. Gaussian Inc., Wallingford CT.

Butyirskaya, Е. V. (2011). [Computational chemistry: bases of theory and work with the programs of Gaussian and GaussView]. Moscow, Russian Federation: SOLON-PRESS (in Russian).

Tomasi, J. (2011). Selected features of the polarizable continuum model for the representation of solvation. WIREs Comput. Mol. Sci., 1(5), 855–867. doi: 10.1002/wcms.54

Chen, C., Liu, W., Zhou, P. (2016). TBHP-mediated highly efficient dehydrogenative cross-oxidative coupling of methylarenes with acetanilides. Beilstein J. Org. Chem., (12), 2250–2255. doi: 10.3762/bjoc.12.217

Kumar, A., Kumar, B. A. (2014). Nanoparticle mediated organic synthesis (NAMO-synthesis): CuI-NP catalyzed ligand free amidation of aryl halides. RSC Adv., 4(78), 41631–41635. doi: 10.1039/C4RA06804A

Burya, O. I., Suchilina-Sokolenko, S. P., Sokolenko, V. V., Larchikova, O. G. (2006). Ukraine Patent no. 76293. Kyiv, Ukraine. Dnipropetrovs’k state agrarian university.

Tokar, A., Chigvintseva, O. (2021). The quantum-chemical and spectral criteria for hydrogen bonding efficiency in structural analysis of aramides. Chem. Chem. Technol., 15(1), 9–15. doi: 10.23939/chcht15.01.009

Volkov, V. I., Yarmolenko, O. V., Chernyak, A. V., Slesarenko, N. A., Avilova, I. A., Baymuratova, G. R., Yudina, A. V. (2022). Polymer Electrolytes for Lithium-Ion Batteries Studied by NMR Techniques. Membranes, 12(4), 416. doi: 10.3390/membranes12040416

Wolff, S. K., Ziegler, T. (1998). Calculation of DFT-GIAO NMR shifts with the inclusion of spin-orbit coupling. J. Chem. Phys., 109(3), 895–905. doi: 10.1063/1.476630

Kupka, T., Pasterna, G., Lodowski, P., Szeja, W. (1999). GIAO–DFT prediction of accurate NMR parameters in selected glucose derivatives. Magn. Reson. Chem., 37(6), 421–426. doi: 10.1002/(SICI)1097-458X(199906)37:6<421::AID-MRC479>3.0.CO;2-W

Tokar, A. V. (2016). [Thesaurus in Polymer Chemistry]. Dnipro, Ukraine: DSAEU-DNU (in Ukrainian).

Guo, X., Tang, L., Yang, Y., Zha, Zh., Wang, Zh. (2014). An efficient synthesis of amides from alcohols and azides catalyzed by a bifunctional catalyst Au/DNA under mild conditions. Green Chem., 16(5), 2443–2447. doi: 10.1039/C3GC42485E

Tokar, A., Kabat, O., Chigvintseva, O., Belošević, S. (2021). Intermolecular Interactions in Complex Systems “Polyamide-Silica Gel”: The Quantum-Chemical Interpretation. In I. Karabegović (Eds.), New Technologies, Development and Application IV. Lecture Notes in Networks and Systems (pp. 875–882). Springer Nature, Switzerland: Springer Cham. doi: 10.1007/978-3-030-75275-0_96

Tokar, A. V., Chigvintseva, O. P. (2022). [The intermolecular and intramolecular interactions in complex phenylone based systems: a quantum-chemical interpretation]. The current state of fundamental and applied natural sciences research (pp. 327–352). Riga, Latvia: Baltija Publishing. (in Ukrainian). doi: 10.30525/978-9934-26-212-8-15

Vorsina, I. A., Grigoreva, T. F., Vosmerikov, S. V., Lyakhov, N. Z. (2015). Mechanocomposites on the basis of polyamide. Nauka i Studia, 5(136), 20–25.

Published

2022-10-31