REFLECTANCE AND COLORIMETRIC CHARACTERISTICS OF METALLOCOMPLEXES OF FLAVONOIDS FROM CANADIAN GOLDENROD

Authors

DOI:

https://doi.org/10.15421/jchemtech.v32i1.262957

Keywords:

flavonoids, calcium and aluminum ions, metal complexes, dye, reflectance spectra, colorimetry

Abstract

The results of solid-phase analysis of complexes of flavonoids with Ca(II) and Al(III), which were obtained from the aqueous extract of the inflorescences of the canadian goldenrod, are presented. The methods of reflectance spectroscopy in the visible range and colorimetry (CIE XYZ, CIE L*a*b* systems) were used to characterize the preparations. A bathochromic shift of the long-wave band in the reflectance spectra of the complexes relative to unassociated flavonoids was revealed, which is associated with an increase in the degree of conjugation in the chromophore system as a result of binding with metal ions. The criteria of differential spectrophotometry and colorimetry are proposed to confirm the differences between the complexes of flavonoids with Ca(II) and Al(III). The obtained results confirm the prospect of expanding the raw material base for obtaining biologically active metal complexes of flavonoids, improve the methodological basis of non-destructive analysis of dyes such as aluminum lakes, and can also be used in the development of biohybrid materials.

References

de Araújo, F. F., de Paulo Farias, D., Neri-Numa, I. A., Pastore, G. M. (2021). Polyphenols and their applications: An approach in food chemistry and innovation potential. Food Chem., 338, 127535. https://doi.org/10.1016/j.foodchem.2020.127535

Chen, S., Wang, X., Cheng, Y., Gao, H., Chen, X. (2023). A review of classification, biosynthesis, biological activities and potential applications of flavonoids. Molecules, 28(13), 4982. https://doi.org/10.3390/molecules28134982

Alizadeh, S. R., Ebrahimzadeh, M. A. (2022). O-Substituted quercetin derivatives: structural classification, drug design, development, and biological activities, a review. J. Mol. Struct., 1254, 132392. https://doi.org/10.1016/j.molstruc.2022.132392

Tobar-Delgado, E., Mejía-España, D., Osorio-Mora, O., Serna-Cock, L. (2023). Rutin: family farming products’ extraction sources, industrial applications and current trends in biological activity protection. Molecules, 28(15), 5864. https://doi.org/10.3390/molecules28155864

Lorenzo, P., Morais, M. C. (2023). Strategies for the management of aggressive invasive plant species. Plants, 12(13), 2482. https://doi.org/10.3390/plants12132482

Zavialova, L. V., Protopopova, V. V., Kucher, O. O., Ryff, L. E., Shevera, M. V. (2021). Plant invasions in Ukraine. Environmental & Socio-economic Studies, 9(4), 1–13. https://doi.org/10.2478/environ-2021-0020

Zihare, L., Blumberga, D. (2017). Insight into bioeconomy. Solidago canadensis as a valid resource. Brief review. Energy Procedia, 128, 275–280. https://doi.org/10.1016/j.egypro.2017.09.074

Havryliuk, O., Hovorukha, V., Bida, I., Gladka, G., Tymoshenko, A., Kyrylov, S., Mariychuk, R., Tashyrev, O. (2023). Anaerobic degradation of the invasive weed Solidago canadensis L. (goldenrod) and copper immobilization by a community of sulfate-reducing and methane-producing bacteria. Plants, 12(1), 198. https://doi.org/10.3390/plants12010198

Starešinič, M., Podgornik, B., Javoršek, D., Leskovšek, M., Možina, K. (2021). Fibers obtained from invasive alien plant species as a base material for paper production. Forests, 12(5), 527. https://doi.org/10.3390/f12050527

Wiatrowska, B. M., Wawro, A., Gieparda, W., Waliszewska, B. (2022). Bioethanol production potential and other biomass energy properties of invasive Reynoutria, Solidago, and Spiraea plants. Forests, 13(10), 1582. https://doi.org/10.3390/f13101582

Feng, Q., Wang, B., Chen, M., Wu, P., Lee, X., Xing, Y. (2021). Invasive plants as potential sustainable feedstocks for biochar production and multiple applications: A review. Resour., Conserv. Recycl., 164, 105204. https://doi.org/10.1016/j.resconrec.2020.105204

Wei, H., Cheng, H., Yao, N., Li, G., Du, Z., Luo, R., Zheng, Z. (2023). Invasive alien plant biomass-derived hard carbon anode for sodium-ion batteries. Chemosphere, 343, 140220. https://doi.org/10.1016/j.chemosphere.2023.140220

Zong, E., Shen, Y., Yang, J., Liu, X., Song, P. (2023). Preparation and сharacterization of an invasive plant-derived biochar-supported nano-sized lanthanum composite and its application in phosphate capture from aqueous media. ACS Omega, 8(15), 14177–14189. https://doi.org/10.1021/acsomega.3c00992

Gontova, T. M., Rudenko, V. P., Gaponenko, V. P., Kozyra, S. А., Romanova, S. V. (2021). [Investigation of anatomical signs of canadian goldenrod herbs, introduced in Ukraine]. Farmatsevtychnyi zhurnal, 6, 94–104 (in Ukrainian). https://doi.org/10.32352/0367-3057.6.21.09

Radušienė, J., Karpavičienė, B., Marksa, M., Ivanauskas, L., Raudonė, L. (2022). Distribution patterns of essential oil terpenes in native and invasive Solidago species and their comparative assessment. Plants, 11(9), 1159. https://doi.org/10.3390/plants11091159.

Radusiene, J., Marska, M., Ivanauskas, L., Jakstas, V., Karpaviciene, B. (2015). Assessment of phenolic compound accumulation in two widespread goldenrods. Ind. Crops Prod., 63, 158–166. https://doi.org/10.1016/j.indcrop.2014.10.015

Zekič, J., Vovk, I., Glavnik, V. (2020). Extraction and analyses of flavonoids and phenolic acids from canadian goldenrod and giant goldenrod. Forests, 12(1), 40. https://doi.org/10.3390/f12010040

Leitner, P., Fitz-Binder, C., Mahmud-Ali, A., Bechtold, T. (2012). Production of a concentrated natural dye from Canadian Goldenrod (Solidago canadensis) extracts. Dyes Pigm., 93(1-3), 1416–1421. https://doi.org/10.1016/j.dyepig.2011.10.008

Fedenko, V. S., Landi, M., Shemet, S. A. (2022). Metallophenolomics: a novel integrated approach to study complexation of plant phenolics with metal/metalloid ions. Int. J. Mol. Sci., 23, 11370. https://doi.org/10.3390/ijms231911370

Kasprzak, M.M.; Erxleben, A.; Ochocki, J. (2015). Properties and applications of flavonoid metal complexes. RSC Adv., 5, 45853–45877. https://doi.org/10.1039/C5RA05069C.

Valencia, G. C., Rodriguez, J., Zanocco, A. L., Lemp, E. (2019). The microelement calcium enhances the reactivity of rutin towards singlet oxygen. Afinidad, 76(586), 111–116.

Zhang, J., Cui, C., Zhang, H., Wang, S., Liu, J., Zhai, G. (2016). Synthesis, characterization and antihyperlipidemic of rutin-calcium (II) complex. Life Sci J, 13, 13–21. https://doi.org/10.7537/marslsj130816.03

Fedenko, V. S. (2022). Chemisorption of flavonoids from canadian goldenrod on aluminum oxide. J. Chem. Technol., 30(3), 340–348 (in Ukrainian). https://doi.org/10.15421/jchemtech.v30i3.262972

Ferreira, B. C., Babu, R. S., da Conceição, L. R. B., da Cunha, H. O., Sampaio, D. M., Samyn, L. M., de Barros, A. L. F. (2022). Performance evaluation of DSSCs using naturally extracted dyes from petals of Lantana repens and Solidago canadensis flowers as light-harvesting units. Ionics, 28(11), 5233–5242. https://doi.org/10.1007/s11581-022-04727-9

Nguyen, H. L., Bechtold, T. (2021). Thermal stability of natural dye lakes from Canadian Goldenrod and onion peel as sustainable pigments. J. Cleaner Prod., 315, 128195. https://doi.org/10.1016/j.jclepro.2021.128195

Elemike, E. E., Onwudiwe, D. C., Fayemi, O. E., Botha, T. L. (2019). Green synthesis and electrochemistry of Ag, Au, and Ag–Au bimetallic nanoparticles using golden rod (Solidago canadensis) leaf extract. Appl. Phys. A, 125, 1–12. https://doi.org/10.1007/s00339-018-2348-0

Poonam, P., Singh, R. (2021). Use of bimetallic nanoparticles in the synthesis of heterocyclic molecules. Curr. Org. Chem., 25(3), 351–360. https://doi.org/10.2174/1385272824999200409115018

Guinot, P., Rogé, A., Gargadennec, A., Garcia, M., Dupont, D., Lecoeur, E., Candelier, L., Andary, C. (2006). Dyeing plants screening: an approach to combine past heritage and present development. Color. Technol., 122(2), 93-101. https://doi.org/10.1111/j.1478-4408.2006.00015.x

Bechtold, T., Turcanu, A., Ganglberger, E., Geissler, S. (2003). Natural dyes in modern textile dyehouses—how to combine experiences of two centuries to meet the demands of the future? J. Clean. Prod., 11(5), 499–509. https://doi.org/10.1016/S0959-6526(02)00077-X

Čuk, N., Šala, M., Gorjanc, M. (2021). Development of antibacterial and UV protective cotton fabrics using plant food waste and alien invasive plant extracts as reducing agents for the in-situ synthesis of silver nanoparticles. Cellulose, 28, 3215–3233. https://doi.org/10.1007/s10570-021-03715-y

Fedenko, V. S. (2007). [Dose effect of cyanidin interaction with lead ions in roots of maize seedlings]. Ukrains' kyi Biokhimichnyi Zhurnal, 79(2), 24–29 (in Ukrainian).

Fedenko, V. S. (2008). [Cyanidin as endogenous chelator of metal ions in maize seedling roots]. Ukrains' kyi Biokhimichnyi Zhurnal, 80(1), 102–106 (in Ukrainian).

Fedenko, V. S. (2006). [Cyanidin complexation with metal ions]. Ukrains' kyi Biokhimichnyi Zhurnal, 78(2), 149–152 (in Ukrainian).

Fedenko, V. S., Landi, M., Shemet, S. A. (2017). Detection of nickel in maize roots: A novel nondestructive approach by reflectance spectroscopy and colorimetric models. Ecol. Indic., 82, 463–469. https://doi.org/10.1016/j.ecolind.2017.07.021

De Souza, R. F., De Giovani, W. F. (2005). Synthesis, spectral and electrochemical properties of Al (III) and Zn (II) complexes with flavonoids. Spectrochim. Acta A Mol. Biomol. Spectrosc., 61(9), 1985–1990. https://doi.org/10.1016/j.saa.2004.07.029

Mahmud-Ali, A., Fitz-Binder, C., Bechtold, T. (2012). Aluminium based dye lakes from plant extracts for textile coloration. Dyes Pigm., 94(3), 533–540. https://doi.org/10.1016/j.dyepig.2012.03.003

Clementi, C., Doherty, B., Gentili, P. L., Miliani, C., Romani, A., Brunetti, B. G., Sgamellotti, A. (2008). Vibrational and electronic properties of painting lakes. Appl. Phys. A, 92, 25–33. https://doi.org/10.1007/s00339-008-4474-6

Gulmini, M., Idone, A., Diana, E., Gastaldi, D., Vaudan, D., Aceto, M. (2013). Identification of dyestuffs in historical textiles: Strong and weak points of a non-invasive approach. Dyes Pigm., 98(1), 136–145. https://doi.org/10.1016/j.dyepig.2013.02.010

Garcia‐Bucio, M. A., Maynez‐Rojas, M. Á., Casanova‐González, E., Cárcamo‐Vega, J. J., Ruvalcaba‐Sil, J. L., Mitrani, A. (2019). Raman and surface‐enhanced Raman spectroscopy for the analysis of Mexican yellow dyestuff. J. Raman Spectrosc., 50(10), 1546–1554. https://doi.org/10.1002/jrs.5729

García-Bucio, M. A., Casanova-González, E., Mitrani, A., Ruvalcaba-Sil, J. L., Maynez-Rojas, M. Á., Rangel-Chávez, I. (2022). Non-destructive and non-invasive methodology for the in situ identification of Mexican yellow lake pigments. Microchem. J., 183, 107948. https://doi.org/10.1016/j.microc.2022.107948

Eisnor, M. M., McLeod, K. E. R., Bindesri, S., Svoboda, S. A., Wustholz, K. L., Brosseau, C. L. (2022). Electrochemical surface-enhanced Raman spectroscopy (EC-SERS): a tool for the identification of polyphenolic components in natural lake pigments. Phys. Chem. Chem. Phys., 24(1), 347–356 https://doi.org/10.1039/d1cp03301h

Szadkowski, B., Kuśmierek, M., Śliwka-Kaszyńska, M., Marzec, A. (2022). Structure and stability characterization of natural lake pigments made from plant extracts and their potential application in polymer composites for packaging materials. Materials, 15(13), 4608. https://doi.org/10.3390/ma15134608

Barvinchenko, V. M., Lipkovskaya, N. O. (2020). [Sorption of natural flavonoids on the surface of pyrogenic aluminum oxide from water-ethanol solutions]. Khim., Fiz. Tekhnol. Poverkhn. – Chem., Phys. Technol. Surf., 11(2), 190-200 (in Ukrainian). https://doi.org/10.15407/hftp11.02.190

Żbik, K., Onopiuk, A., Szpicer, A., Kurek, M. (2023). Comparison of the effects of extraction method and solvents on biological activities of phytochemicals from selected violet and blue pigmented flowers. J. Food Meas. Charact., 1–9. https://doi.org/10.1007/s11694-023-02158-2

Nascimento, L. L. B. S., Mageste, A. B., Ferreira, G. M. D., da Rocha Patrício, P., de Souza Rezende, S., de Oliveira, J. E., Cardoso, M. D. G., Ferreira, G. M. D. (2023). Flavonoid-incorporated starch and poly (vinyl alcohol) film: sensitive and selective colorimetric sensor for copper identification and quantification in beverages and environmental samples. Colloids Surf. A Physicochem. Eng. Asp., 679, 132574. https://doi.org/10.1016/j.colsurfa.2023.132574

Colombo, M., Michels, L. R., Teixeira, H. F., Koester, L. S. (2022). Flavonoid delivery by solid dispersion: a systematic review. Phytochem. Rev., 21, 783–808 https://doi.org/10.1007/s11101-021-09763-3

Li, S., Mu, B., Wang, X., Wang, A. (2021). Recent researches on natural pigments stabilized by clay minerals: A review. Dyes Pigm., 190, 109322. https://doi.org/10.1016/j.dyepig.2021.109322

Perlein, A., Bert, V., Fernandes de Souza, M., Gaucher, R., Papin, A., Geuens, J., Wens, A., Meers, E. (2021). Phytomanagement of a trace element-contaminated site to produce a natural dye: first screening of an emerging biomass valorization chain. Appl. Sci., 11(22), 10613. https://doi.org/10.3390/app112210613

Bielecka, A., Królak, E. (2019). Solidago canadensis as a bioaccumulator and phytoremediator of Pb and Zn. Environ. Sci. Pollut. Res., 26(36), 36942–36951. https://doi.org/10.1007/s11356-019-06690-x

Fedenko, V. S., Shemet, S. A., Guidi, L., Landi, M. (2020). Metal/metalloid-induced accumulation of phenolic compounds in plants. In: M. Landi, S. A. Shemet, V. S. Fedenko (Eds.), Metal toxicity in higher plants. N.Y., USA: Nova Science Publishers.

Published

2024-04-26