CHEMISORPTION OF FLAVONOIDS FROM CANADIAN GOLDENROD ON ALUMINUM OXIDE

Authors

DOI:

https://doi.org/10.15421/jchemtech.v30i3.262972

Keywords:

flavonoids; rutin; aluminum oxide; chemisorption; reflectance spectra; colorimetry

Abstract

The results of the study of sorption of flavonoids in aqueous and alcoholic extracts of inflorescences of canadian goldenrod with alumina are presented. The methods of reflectance spectroscopy in the visible range and colorimetry (CIE XYZ, CIE L*a*b* systems) were used to characterize plant raw materials, preparations of standard rutin in the solid phase, and adsorbates. According to the data of solid-phase spectrophotometry, the interaction occurred by chemisorption of flavonoids on the surface of the sorbent. The similar nature of the reflectance spectra of adsorbates from extracts and rutin, the predominant component of the flavonoid composition of the studied plant raw materials, was confirmed. The use of the first spectrum derivative proved to be a more effective method for identifying the formation of adsorption complexes in comparison with determining the position of the extended maximum in the reflectance spectra of adsorbates. The bathochromic shift of the minimum of the spectral band in the case of chemisorption is proposed as a diagnostic criterion. According to colorimetric measurements, chemisorption of flavonoids caused an increase in the conditional purity of color tone and yellowness index of adsorbates. For the comparative analysis of adsorbates, the total color difference was calculated with a division into component differences in lightness, chroma and hue angle. The possibility of using an environmentally safe solvent for the functionalization of a biocompatible sorbent has been confirmed. The obtained results can be used in the development of concentration, stabilization of flavonoids from extracts of medicinal plants, the creation of biohybrid materials, improvement of methods of solid-phase analysis of biologically active substances.

References

Alizadeh, S. R., Ebrahimzadeh, M. A. (2022). O-Substituted Quercetin derivatives: structural classification, drug design, development, and biological activities, a review. J. Mol. Struct., 132392. https://doi.org/10.1016/j.molstruc.2022.132392

El‐Missiry, M. A., Fekri, A., Kesar, L. A., Othman, A. I. (2021). Polyphenols are potential nutritional adjuvants for targeting COVID‐19. Phytother. Res., 35(6), 2879–2889. https://doi.org/10.1002/ptr.6992

Koop, B. L., da Silva, M. N., da Silva, F. D., dos Santos Lima, K. T., Soares, L. S., de Andrade, C. J., Valencia, G. A., Monteiro, A. R. (2022). Flavonoids, anthocyanins, betalains, curcumin, and carotenoids: sources, classification and enhanced stabilization by encapsulation and adsorption. Food Res. Int., 110929. https://doi.org/10.1016/j.foodres.2021.110929

Milia, A., Bruno, M., Cavallaro, G., Lazzara, G., Milioto, S. (2019). Adsorption isotherms and thermal behavior of hybrids based on quercetin and inorganic fillers. J. Therm. Anal. Calorim., 138(3), 1971–1977. https://doi.org/10.1007/s10973-019-08257-x

Barvinchenko, V. M., Lipkovskaya, N. O. (2020). [Sorption of natural flavonoids on the surface of pyrogenic aluminum oxide from water-ethanol solutions]. Khim., Fiz. Tekhnol. Poverkhn. – Chem., Phys. Technol. Surf., 11(2), 190–200 (in Ukrainian). https://doi.org/10.15407/hftp11.02.190

Bohuts'ka, K. I., Nozdrenko, D. M. (2014). [The use of aluminum and its compounds for the biomedical purposes]. Fiziolohichnyi Zhurnal, 60(1), 91–97 (in Ukrainian).

Zavialova, L. V., Protopopova, V. V., Kucher, O. O., Ryff, L. E., Shevera, M. V. (2021). Plant invasions in Ukraine. Environmental & Socio-economic Studies, 9(4), 1–13. https://doi.org/10.2478/environ-2021-0020

Gontova, T. M., Rudenko, V. P., Gaponenko, V. P., Kozyra, S. А., Romanova, S. V. (2021). [Investigation of anatomical signs of canadian goldenrod herbs, introduced in Ukraine]. Farmatsevtychnyi zhurnal, (6), 94–104 (in Ukrainian).

https://doi.org/10.32352/0367-3057.6.21.09

Zihare, L., Blumberga, D. (2017). Insight into bioeconomy. Solidago canadensis as a valid resource. Brief review. Energy Procedia, 128, 275–280. https://doi.org/10.1016/j.egypro.2017.09.074

Radušienė, J., Karpavičienė, B., Marksa, M., Ivanauskas, L., Raudonė, L. (2022). Distribution Patterns of Essential Oil Terpenes in Native and Invasive Solidago Species and Their Comparative Assessment. Plants, 11(9), 1159. https://doi.org/10.3390/plants11091159

Marksa, M., Zymone, K., Ivanauskas, L., Radušienė, J., Pukalskas, A., Raudone, L. (2020). Antioxidant profiles of leaves and inflorescences of native, invasive and hybrid Solidago species. Ind. Crops Prod., 145, 112123. https://doi.org/10.1016/j.indcrop.2020.112123

Radusiene, J., Marska, M., Ivanauskas, L., Jakstas, V., Karpaviciene, B. (2015). Assessment of phenolic compound accumulation in two widespread goldenrods. Ind. Crops Prod., 63, 158–166. https://doi.org/10.1016/j.indcrop.2014.10.015

Zekič, J., Vovk, I., Glavnik, V. (2020). Extraction and analyses of flavonoids and phenolic acids from canadian goldenrod and giant goldenrod. Forests, 12(1), 40. https://doi.org/10.3390/f12010040

Leitner, P., Fitz-Binder, C., Mahmud-Ali, A., Bechtold, T. (2012). Production of a concentrated natural dye from Canadian Goldenrod (Solidago canadensis) extracts. Dyes Pigm., 93(1-3), 1416–1421. https://doi.org/10.1016/j.dyepig.2011.10.008

Nguyen, H. L., Bechtold, T. (2021). Thermal stability of natural dye lakes from Canadian Goldenrod and onion peel as sustainable pigments. J. Cleaner Prod., 315, 128195.

https://doi.org/10.1016/j.jclepro.2021.128195

Guinot, P., Rogé, A., Gargadennec, A., Garcia, M., Dupont, D., Lecoeur, E., Candelier, L., Andary, C. (2006). Dyeing plants screening: an approach to combine past heritage and present development. Color. Technol., 122(2), 93–101. https://doi.org/10.1111/j.1478-4408.2006.00015.x

Likhanov, A., Oliinyk, M., Pashkevych, N., Churilov, A., Kozyr, M. (2021). The Role of Flavonoids in Invasion Strategy of Solidago canadensis L. Plants, 10(8), 1748. https://doi.org/10.3390/plants10081748

Fedenko, V. S. (2007). [Dose effect of cyanidin interaction with lead ions in roots of maize seedlings]. Ukrains' kyi Biokhimichnyi Zhurnal, 79(2), 24–29(in Ukrainian).

Fedenko, V. S. (2008). [Cyanidin as endogenous chelator of metal ions in maize seedling roots]. Ukrains' kyi Biokhimichnyi Zhurnal, 80(1), 102–106 (in Ukrainian).

Fedenko, V. S., Shemet, S. A., Struzhko, V. S. (2005). [Complexation of cyanidin with cadmium ions in solution]. Ukrains' kyi Biokhimichnyi Zhurnal, 77, 104–109(in Ukrainian).

Fedenko, V. S. (2006). [Cyanidin complexation with metal ions]. Ukrains' kyi Biokhimichnyi Zhurnal (1999), 78(2), 149–152 (in Ukrainian).

Panzella, L., Moccia, F., Nasti, R., Marzorati, S., Verotta, L., Napolitano, A. (2020). Bioactive phenolic compounds from agri-food wastes: An update on green and sustainable extraction methodologies. Front. Nutr., 7, 60. https://doi.org/10.3389/fnut.2020.00060

Nobahar, A., Carlier, J. D., Miguel, M. G., Costa, M. C. (2021). A review of plant metabolites with metal interaction capacity: a green approach for industrial applications. BioMetals, 34(4), 761–793. https://doi.org/10.1007/s10534-021-00315-y

Fedenko, V. S., Landi, M., Shemet, S. A. (2017). Detection of nickel in maize roots: A novel nondestructive approach by reflectance spectroscopy and colorimetric models. Ecol. Indic., 82, 463–469. https://doi.org/10.1016/j.ecolind.2017.07.021

Fedenko, V. S. (2002). [Cooperation of carotenoid and phenolic pigments in flowers polychroism formation of cryptophyte]. Fiziologia i Biokhimia Kul'turnykh Rastenii, 34(3), 199–212

Chebotaryov, A.M., Snigur, D.V. (2020). [Colorimetryinthestudyofacid-base equilibria in solutions of polyfunctional organic compounds]. Odessa, Ukraine: Odesa I. I. Mechnikov National University (in Ukrainian).

Horváth, G., Molnár, P., Farkas, A., Szabó, L. G., Turcsi, E., Deli, J. (2010). Separation and Identification of Carotenoids in Flowers of Chelidonium majus L. and Inflorescences of Solidago canadensis L. Chromatographia, 71(1), 103–108. https://doi.org/10.1365/s10337-010-1510-4

Schlipf, D. M., Jones, C. A., Armbruster, M. E., Rushing, E. S., Wooten, K. C., Rankin, S. E., Knutson, B. L. (2015). Flavonoid adsorption and stability on titania-functionalized silica nanoparticles. Colloids Surf. A, 478, 15–21. https://doi.org/10.1016/j.colsurfa.2015.03.039

Kasprzak, M. M., Erxleben, A., Ochocki, J. (2015). Properties and applications of flavonoid metal complexes. RSC Adv., 5(57), 45853–45877. https://doi.org/10.1039/C5RA05069C

Ekaette, I., & Saldaña, M. D. (2020). Barley starch behavior in the presence of rutin under subcritical water conditions. Food Hydrocolloids, 100, 105421. https://doi.org/10.1016/j.foodhyd.2019.105421

Shelepova, O., Vinogradova, Y., Vergun, O., Grygorieva, O., Brindza, J. (2020). Assessment of flavonoids and phenolic compound accumulation in invasive Solidago canadensis L. in Slovakia. Potravinarstvo Slovak Journal of Food Sciences, 14(1), 587–594. https://doi.org/10.5219/1378

Colombo, M., Michels, L. R., Teixeira, H. F., Koester, L. S. (2022). Flavonoid delivery by solid dispersion: a systematic review. Phytochem. Rev., 21, 783–808 https://doi.org/10.1007/s11101-021-09763-3

Ibrahim, A., Daood, H. G., Égei, M., Takács, S., Helyes, L. (2022). A Comparative Study between Vis/NIR Spectroradiometer and NIR Spectroscopy for the Non-Destructive Quality Assay of Different Watermelon Cultivars. Horticulturae, 8(6), 509. https://doi.org/10.3390/horticulturae8060509

Published

2022-10-31