USING COFFEE PRODUCTION WASTE AS A RAW MATERIAL FOR SOLID FUEL

Authors

DOI:

https://doi.org/10.15421/jchemtech.v30i4.265116

Keywords:

spent coffee grounds, barley, chicory, waste, secondary raw materials, solid fuel, briquettes

Abstract

The article describes the results of experimental studies of solid fuel production from coffee production waste, which by its nature is a mixture of coffee grounds, barley, and chicory. The formation of solid fuel briquetted samples was carried out by pressing under a pressure of 100 kgf/cm2 for 60 seconds at different temperatures. The higher calorific value of the obtained solid fuel samples and dried initial mixture of spent coffee grounds was determined. The higher calorific value of the briquetted samples is in the range of ~22147÷23095 kJ/kg, and that of the dried initial spent coffee grounds mixture is ~21583 kJ/kg. The prospective use of the studied raw materials in comparison with existing analogues is shown. The use of a mixture of coffee production waste for the production of solid fuel will solve the problem of excessive production of industrial waste, rationalize their secondary use and avoid the negative impact of their accumulation on the environment.

References

Makas, A., Krusir, H. (2021). Suchasni metody utylizatsii kavovoho shlamu, yak elemet pryrodookhoronnykh tekhnolohii. Zbirnyk naukovykh prats ΛΌHOΣ, 78–82. (in Ukrainian).

https://doi.org/10.36074/logos-15.10.2021.21

Martinez-Saez, N., García, A. T., Pérez, I. D., Rebollo-Hernanz, M., Mesías, M., Morales, F. J., Martín-Cabrejas, M. A., del Castillo, M. D. (2017). Use of spent coffee grounds as food ingredient in bakery products. Food Chem., 216, 114–122/

https://doi.org/10.1016/j.foodchem.2016.07.173

Woo, D.-G., Kim, S. H., Kim, T. H. (2021). Solid fuel characteristics of pellets comprising spent coffee grounds and wood powder. Energies, 14(2), 371. https://doi.org/10.3390/en14020371

Iriondo-DeHond, A., Iriondo-DeHond, M., del Castillo, M. D. (2020). Applications of compounds from coffee processing by-products. Biomolecules, 10(9), 1219. https://doi.org/10.3390/biom10091219

Ballesteros, L. F., Teixeira, J. A., Mussatto, S. I. (2014). Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin. Food Bioprocess Technol., 7(12), 3493–3503.

https://doi.org/10.1007/s11947-014-1349-z

Ivashchuk, O. S., Atamanyuk, V. M., Chyzhovych, R. A., Kiiaieva, S. S., Duleba, V.P., Sobechko, I. B. (2022). Research of solid fuel briquettes obtaining from brewer’s spent grain. Journal of Chemistry and Technologies, 30(2), 216–221.

https://doi.org/10.15421/jchemtech.v30i2.256749

Mesa, L., González, E., Cara, C., González, M., Castro, E., Mussatto, S. I. (2011). The effect of organosolv pretreatment variables on enzymatic hydrolysis of sugarcane bagasse. Chem. Eng. J., 168(3), 1157–1162.

https://doi.org/10.1016/j.cej.2011.02.003

Leow, Y., Yew, P. Y., Chee, P. L., Loh, X. J., Kai, D. (2021). Recycling of spent coffee grounds for useful extracts and green composites. RSC Adv., 11(5), 2682–2692. https://doi.org/10.1039/d0ra09379c

Abdullah, M., Bulent Koc, A. (2013). Oil removal from waste coffee grounds using two-phase solvent extraction enhanced with ultrasonication. Renewable Energy, 50, 965–970.

https://doi.org/10.1016/j.renene.2012.08.073

Rocha, M. V., de Matos, L. J., Lima, L. P., Figueiredo, P. M., Lucena, I. L., Fernandes, F. A., Gonçalves, L. R. (2014). Ultrasound-assisted production of biodiesel and ethanol from spent coffee grounds. Bioresour. Technol., 167, 343–348.

https://doi.org/10.1016/j.biortech.2014.06.032

Kwon, E. E., Yi, H., Jeon, Y. J. (2013). Sequential co-production of biodiesel and bioethanol with spent coffee grounds. Bioresour. Technol., 136, 475–480. https://doi.org/10.1016/j.biortech.2013.03.052

McNutt, J., & He, Q. (S. (2019). Spent coffee grounds: A review on current utilization. J. Ind. Eng. Chem., 71, 78–88.

https://doi.org/10.1016/j.jiec.2018.11.054

Kindzera D. P., Atamanyuk V. M., Hosovskyi R. R., Motil I. M. (2013). Doslidzhennya protsesu formuvannya palyvnykh bryketiv iz roslynnoyi syrovyny ta vyznachennya yikh kharakterystyk. Naukovyi Visnyk Natsiohalnoho Lisotekhnichnoho Universytetu Ukrainy, 23(17), 138–146 (in Ukrainian).

Ivashchuk, O. S., Atamanyuk, V. M., Chyzhovych, R. A., Kiiaieva, S. S., Zherebetskyi, R. R., Sobechko, I. B. (2022) Preparation of an alternate solid fuel from alcohol distillery stillage. Vopr. Khim. Khim. Tekhnol., 1, 54–59.

https://doi.org/10.32434/0321-4095-2022-140-1-54-59

Chen, Y.-C., Chen, L.-Y. (2021). Pelleting spent coffee grounds by waste utensils as binders of biofuels. J. Environ. Chem. Eng., 9(3), 105006.

https://doi.org/10.1016/j.jece.2020.105006

Chaloupkova, V., Ivanova, T., Ekrt, O., Kabutey, A., Herak, D. (2018). Determination of particle size and distribution through image-based macroscopic analysis of the structure of biomass briquettes. Energies, 11(2), 331.

https://doi.org/10.3390/en11020331

Manziy, S., Kopanskiy, M., Ferenc, O. (2010). Porivnjaljni kharakterystyky ghranuljovanogho ta bryketovanogho biopalyva. Naukovyi Visnyk Natsiohalnoho Lisotekhnichnoho Universytetu Ukrainy, 20(3), 88–90 (in Ukrainian).

Khivrych, O. B., Kvak, V. M., Kas’kiv, V. V., Mamajsur, V. V., Makarenko, A. S. (2011). Energetychni roslyny yak alternatyva tradycijnym vydam palyva. Agrobiologiya, 6, 153-156 (in Ukrainian).

Ivashchuk, O. S., Atamanyuk, V. M., Gnativ, Z. Ya., Chyzhovych, R. A., Zherebetskyi, R. R. (2021). Research into kinetics of filtration drying of alcohol distillery stillage. Vopr. Khim. Khim. Tekhnol., 4, 58–65.

https://doi.org/10.32434/0321-4095-2021-137-4-58-65

Kobeyeva, Z., Khussanov, A., Atamanyuk, V., Hnativ, Z., Kaldybayeva, B., Janabayev, D., Gnylianska, L. (2022). Analyzing the kinetics in the filtration drying of crushed cotton stalks. East.-Eur. J. Enterp. Technol., 1(8(115), 55–66.

https://doi.org/10.15587/1729-4061.2022.252352

Ivashchuk, O. S., Atamanyuk, V. M., Chyzhovych, R. A., Kuzminchuk, T. A., Zherebetskyi, R. R., Kiiaieva, S. S. (2021). Research of the calorific value of dried alcohol distillery stillage. Chem. Technol. Eng., Proc., 4, 58–65.

https://doi.org/10.23939/cte2021.01.200

Gangil, S., Bhargav, V. K. (2019). Influences of binderless briquetting stresses on intrinsic bioconstituents of rice straw based solid biofuel. Renewable Energy, 133, 462–469. https://doi.org/10.1016/j.renene.2018.10.033

García-Maraver, A., Popov, V., Zamorano, M. (2011). A review of European standards for pellet quality. Renewable Energy, 36(12), 3537–3540.

https://doi.org/10.1016/j.renene.2011.05.013

Downloads

Published

2023-01-26