STUDY OF BIOCATALYTIC SYNTHESIS OF PHYTOSTEROL ESTERS AS FORMULATION COMPONENTS OF NUTRITIONAL SYSTEMS FOR HEALTH PURPOSES

Authors

DOI:

https://doi.org/10.15421/jchemtech.v30i3.265174

Keywords:

phytosterol, lipase, biocatalysis, esterification, ester, mathematical modeling

Abstract

The development of new domestic food technologies aimed at protecting and preserving human health is among the most urgent social challenges of our time. Phytosterols and their derivatives, in particular esters, are the perspective formulation components of food products for health purposes. These compounds regulate plasma cholesterol levels, prevent diseases associated with atherosclerosis, reduce cancer risk, and have anti-inflammatory, antifungal, and antibacterial effects. Currently, phytosterol esters are mainly produced by chemical esterification and transesterification, which involve several drawbacks, in particular, excessive energy consumption, by-product emission, product darkening, low selectivity, and the necessity to remove the catalyst from the product. All the listed drawbacks of chemical technologies are excluded when synthesizing phytosterol esters by biocatalytic esterification, establishing the rational parameters of which was the purpose of this study. The study objective was solved through the response surface methodology. The unknown values of the parameters were determined by applying regression model algorithms. Minimization of the deviation potential was performed by finding appropriate combinations of the predictor experimental series. The Statistica 10 program was used for modeling, experimental data processing, and statistical calculations. A mathematical model was developed to predict the degree of feedstock conversion into products based on the process conditions. The conducted studies made it possible to establish the rational values for biocatalytic esterification aimed at synthesizing esters of phytosterol and fatty acids with a temperature of 58 °C and reaction time of 435 minutes.

Author Biographies

Pavlo O. Nekrasov, National Technical University Kharkiv Polytechnic Institute

The Head of the Department of technology of fats and fermentation products at National Technical University «Kharkiv Polytechnic Institute», Doctor of Sciences (Dr. Hab.) in Engineering, Professor

Tetiana O. Berezka, National Technical University «Kharkiv Polytechnic Institute»

Associate Professor of the Department of technology of fats and fermentation products

Oleksandr P. Nekrasov, National Technical University «Kharkiv Polytechnic Institute»

Professor of the Department of physical chemistry at National Technical University «Kharkiv Polytechnic Institute»

Olga M. Gudz, National Technical University «Kharkiv Polytechnic Institute»

Associate Professor of the Department of technology of fats and fermentation products at National Technical University «Kharkiv Polytechnic Institute»

Svitlana I. Rudneva, National Technical University «Kharkiv Polytechnic Institute»

Associate Professor of the Department of physical chemistry at National Technical University «Kharkiv Polytechnic Institute»

Svitlana M. Molchenko, National Technical University «Kharkiv Polytechnic Institute»

Associate Professor of the Department of technology of fats and fermentation products at National Technical University «Kharkiv Polytechnic Institute»

References

Tkachenko, N., Nekrasov P., Makovska, T., Lanzhenko, L. (2016). Optimization of formulation composition of the low-calorie emulsion fat systems. East.-Eur. J. Enterp. Technol., 81(3/11), 20–27.

https://doi.org/10.15587/1729-4061.2016.70971

Nekrasov, P. O., Piven, O. M., Nekrasov, O. P., Gudz, O. M., Kryvonis, N. O. (2018). Kinetics and thermodynamics of biocatalytic glycerolysis of triacylglycerols enriched with omega-3 polyunsaturated fatty acids. Voprosy khimii i khimicheskoi technologii – Issues of Chemistry and Chemical Technology, (5), 31–36.

Nekrasov, P. O., Gudz, O. M., Nekrasov, O. P., Kishchenko, V. A., Holubets, O.V. (2019). [Fatty systems with reduced content of trans-fatty acids]. Voprosy khimii i khimicheskoi technologii – Issues of Chemistry and Chemical Technology, (3), 132–138 (in Ukrainian). https://doi.org/10.32434/0321-4095-2019-124-3-132-138

Nekrasov, P. O., Gudz, O. M., Nekrasov, O. P., Berezka, T.O. (2020). Optimizing the parameters of the production process of fat systems with a minimum content of trans-isomers. Voprosy khimii i khimicheskoi technologii – Issues of Chemistry and Chemical Technology, (3), 128–133. https://doi.org/10.32434/0321-4095-2020-130-3-128-133

Nekrasov, P. O., Tkachenko, N. A., Nekrasov, O. P., Gudz, O. M., Berezka, T. O., Molchenko, S. M. (2021). Oxidization resistance and sorption of oleogels as new-generation fat systems. Voprosy khimii i khimicheskoi technologii – Issues of Chemistry and Chemical Technology, (4), 89–95.

https://doi.org/10.32434/0321-4095-2021-137-4-89-95

Moreau, R. A., Nystrom, L., Whitaker, B. D., Winkler-Moser, С. J. K., Baer, D. J., Gebauer, S. K., Hicks, K.B. (2018). Phytosterols and their derivatives: Structural diversity, distribution, metabolism, analysis, and health-promoting uses. Prog. Lipid Res., 70, 35–61. https://doi.org/10.1016/j.plipres.2018.04.001.

Kriengsinyos, W., Wangtong, A., Komindr, S. (2015). Serum cholesterol reduction efficacy of biscuits with added plant stanol ester. Cholesterol, 2015. https://doi.org/10.1155/2015/353164

Chau, Y. P., Cheng, Y. C., Sing, C. W., Tsoi, M. F., Cheng, V. K. F., Lee, G. K. Y., Cheung, C.L., Cheung, B.M.Y. (2020). The lipid-lowering effect of once-daily soya drink fortified with phytosterols in normocholesterolaemic Chinese: A double-blind randomized controlled trial. Eur. J. Nutr., 59(6), 2739–2746.

https://doi.org/10.1007/s00394-019-02119-w

Talati, R., Sobieraj, D. M., Makanji, S. S., Phung, O. J., Coleman, C. I. (2010). The comparative efficacy of plant sterols and stanols on serum lipids: A systematic review and meta-analysis. J. Am. Diet. Assoc., 110(5), 719–726. https://doi.org/10.1016/j.jada. 2010.02.011

Zhu, H., Chen, J., He, Z., Hao, W., Liu, J., Kwek, E., Ma, K.Y., Bi, Y. (2019). Plasma cholesterol-lowering activity of soybean germ phytosterols. Nutrients, 11. https://doi.org/10.3390/nu11112784

Rouyanne, T. R., Johanna, M. G., Eike, A. T. (2014). LDL-cholesterol-lowering effect of plant sterols and stanols across different dose ranges: A meta-analysis of randomised controlled studies. Br. J. Nutr., 112, 214–219. https://doi.org/10.1017/s0007114514000750

Trautwein, E. A., Vermeer, M. A., Hiemstra, H., Ras, R. T. (2018). LDL-cholesterol lowering of plant sterols and stanols - Which factors influence their efficacy? Nutrients, 10. https://doi.org/10.3390/nu10091262

Nakano, T., Inoue, I., Takenaka, Y., Ikegami, Y., Kotani, N., Shimada, A., Noda, M., Murakoshi, T. (2018). Luminal plant sterol promotes brush border membrane-to-lumen cholesterol efflux in the small intestine. J. Clin. Biochem. Nutr., 63(2), 102–105. https://doi.org/10.3164/jcbn.17-116

Cedó, L., Farràs, M., Lee-Rueckert, M., & Escolà-Gil, J. C. (2019). Molecular insights into the mechanisms underlying the cholesterol-lowering effects of phytosterols. Curr. Med. Chem., 26(37), 6704–6723. https://doi.org/10.2174/0929867326666190822154701

Kaur, R., Myrie, S. B. (2020). Association of dietary phytosterols with cardiovascular disease biomarkers in humans. Lipids, 55(6), 569–584. https://doi.org/10.1002/lipd.12262

Orem, A., Alasalvar, C., Vanizor Kural, B., Yaman, S., Orem, C., Karadag, A., Pelvan, E., Zawistowski, J. (2017). Cardio-protective effects of phytosterol-enriched functional black tea in mild hypercholesterolemia subjects. J. Funct. Foods, 31, 311–319.

https://doi.org/10.1016/j.jff.2017.01.048

Poli, A., Marangoni, F., Corsini, A., Manzato, E., Marrocco, W., Martini, D., Medea, G., Visioli, F. (2021). Phytosterols, cholesterol control, and cardiovascular disease. Nutrients, 13(8), 2810.

https://doi.org/10.3390/nu13082810

Feng, S., Dai, Z., Liu, A. B., Huang, J., Narsipur, N., Guo, G., et al. (2018). Intake of stigmasterol and β-sitosterol alters lipid metabolism and alleviates NAFLD in mice fed a high-fat western-style diet. Biochim. Biophys. Acta, Mol. Cell Biol. Lipids, 1863(10), 1274–1284. https://doi.org/10.1016/j.bbalip.2018.08.004

Ghaedi, E., Varkaneh, H. K., Rahmani, J., Mousavi, S. M., Mohammadi, H., Fatahi, S., Pantovic, A., Mofrad, M.D., Zhang, Y. (2019). Possible antiobesity effects of phytosterols and phytostanols supplementation in humans: A systematic review and dose–response meta-analysis of randomized controlled trials. Phytother. Res., 33(5), 1246–1257. https://doi.org/10.1002/ptr.6319

Suttiarporn, P., Chumpolsri, W., Mahatheeranont, S., Luangkamin, S., Teepsawang, S., Leardkamolkarn, V. (2015). Structures of phytosterols and triterpenoids with potential anti-cancer activity in bran of black nonglutinous rice. Nutrients, 7(3), 1672–1687. https://doi.org/10.3390/nu7031672

Vilahur, G., Ben-Aicha, S., Diaz-Riera, E., Badimon, L., Padró, T. (2019). Phytosterols and inflammation. Curr. Med. Chem., 26(37), 6724–6734.

Raju, D., Sarmistha, M., Chayan, A. M., Fatimah, O. D., Abdul, H. M., Min, C. S., Soo, I.M. (2021). Phytosterols: targeting neuroinflammation in neurodegeneration. Curr. Pharm. Des., 27(3), 383–401. https://doi.org/10.2174/1381612826666200628022812

Burčová, Z., Kreps, F., Greifová, M., Jablonský, M., Ház, A., Schmidt, Š., Šurina, I. (2018). Antibacterial and antifungal activity of phytosterols and methyl dehydroabietate of Norway spruce bark extracts. J. Biotechnol., 282, 18–24. https://doi.org/10.1016/j.jbiotec.2018.06.340

Li, X., Zhang, Z., Cheng, J., Diao, C., Yan, Y., Liu, D., Wang, H., Zheng, F. (2019). Dietary supplementation of soybean-derived sterols regulates cholesterol metabolism and intestinal microbiota in hamsters. J. Funct. Foods, 59, 242–250. https://doi.org/10.1016/j.jff.2019.05.032

Prasad, M., Jayaraman, S., Eladl, M.A., El-Sherbiny, M., Abdelrahman, M.A.E., Veeraraghavan, V.P., Vengadassalapathy, S., Umapathy, V.R., Jaffer Hussain, S.F., Krishnamoorthy, K., Sekar, D., Palanisamy, C.P., Mohan, S.K., Rajagopal, P. (2022). A comprehensive review on therapeutic perspectives of phytosterols in insulin resistance: a mechanistic approach. Molecules, 27, 1595. https://doi.org/10.3390/molecules27051595

Li, X., Xin, Y., Mo, Y., Marozik, P., He, T., Guo, H. (2022). The Bioavailability and Biological Activities of Phytosterols as Modulators of Cholesterol Metabolism. Molecules, 27(2), 523.

https://doi.org/10.3390/molecules27020523

Feng, S.; Wang, L.; Shao, P.; Sun, P.; Yang, C.S. (2022). A review on chemical and physical modifications of phytosterols and their influence on bioavailability and safety, Crit. Rev. Food Sci. Nutr., 62(20), 5638–5657. https://doi.org/10.1080/10408398.2021.1888692

Yang, F., Oyeyinka, S. A., Ma, Y. (2016). Novel synthesis of phytosterol ester from soybean sterol and acetic anhydride. J. Food Sci., 81, C1629–C1635. https://doi.org/10.1111/1750-3841.13354

International Organization for Standardization. (2020). Animal and vegetable fats and oils – Determination of acid value and acidity. (ISO 660:2020). Geneva, Switzerland: International Organization for Standardization.

Wu, C.F.J., Michael S. Hamada, M.S. (2021). Experiments: Planning, Analysis, and Optimization, 3rd Edition. Hoboken, USA: John Wiley & Sons Inc.

Downloads

Published

2022-10-31