STUDY OF BIOCATALYTIC SYNTHESIS OF PHYTOSTEROL ESTERS AS FORMULATION COMPONENTS OF NUTRITIONAL SYSTEMS FOR HEALTH PURPOSES
DOI:
https://doi.org/10.15421/jchemtech.v30i3.265174Keywords:
phytosterol, lipase, biocatalysis, esterification, ester, mathematical modelingAbstract
The development of new domestic food technologies aimed at protecting and preserving human health is among the most urgent social challenges of our time. Phytosterols and their derivatives, in particular esters, are the perspective formulation components of food products for health purposes. These compounds regulate plasma cholesterol levels, prevent diseases associated with atherosclerosis, reduce cancer risk, and have anti-inflammatory, antifungal, and antibacterial effects. Currently, phytosterol esters are mainly produced by chemical esterification and transesterification, which involve several drawbacks, in particular, excessive energy consumption, by-product emission, product darkening, low selectivity, and the necessity to remove the catalyst from the product. All the listed drawbacks of chemical technologies are excluded when synthesizing phytosterol esters by biocatalytic esterification, establishing the rational parameters of which was the purpose of this study. The study objective was solved through the response surface methodology. The unknown values of the parameters were determined by applying regression model algorithms. Minimization of the deviation potential was performed by finding appropriate combinations of the predictor experimental series. The Statistica 10 program was used for modeling, experimental data processing, and statistical calculations. A mathematical model was developed to predict the degree of feedstock conversion into products based on the process conditions. The conducted studies made it possible to establish the rational values for biocatalytic esterification aimed at synthesizing esters of phytosterol and fatty acids with a temperature of 58 °C and reaction time of 435 minutes.
References
Tkachenko, N., Nekrasov P., Makovska, T., Lanzhenko, L. (2016). Optimization of formulation composition of the low-calorie emulsion fat systems. East.-Eur. J. Enterp. Technol., 81(3/11), 20–27.
https://doi.org/10.15587/1729-4061.2016.70971
Nekrasov, P. O., Piven, O. M., Nekrasov, O. P., Gudz, O. M., Kryvonis, N. O. (2018). Kinetics and thermodynamics of biocatalytic glycerolysis of triacylglycerols enriched with omega-3 polyunsaturated fatty acids. Voprosy khimii i khimicheskoi technologii – Issues of Chemistry and Chemical Technology, (5), 31–36.
Nekrasov, P. O., Gudz, O. M., Nekrasov, O. P., Kishchenko, V. A., Holubets, O.V. (2019). [Fatty systems with reduced content of trans-fatty acids]. Voprosy khimii i khimicheskoi technologii – Issues of Chemistry and Chemical Technology, (3), 132–138 (in Ukrainian). https://doi.org/10.32434/0321-4095-2019-124-3-132-138
Nekrasov, P. O., Gudz, O. M., Nekrasov, O. P., Berezka, T.O. (2020). Optimizing the parameters of the production process of fat systems with a minimum content of trans-isomers. Voprosy khimii i khimicheskoi technologii – Issues of Chemistry and Chemical Technology, (3), 128–133. https://doi.org/10.32434/0321-4095-2020-130-3-128-133
Nekrasov, P. O., Tkachenko, N. A., Nekrasov, O. P., Gudz, O. M., Berezka, T. O., Molchenko, S. M. (2021). Oxidization resistance and sorption of oleogels as new-generation fat systems. Voprosy khimii i khimicheskoi technologii – Issues of Chemistry and Chemical Technology, (4), 89–95.
https://doi.org/10.32434/0321-4095-2021-137-4-89-95
Moreau, R. A., Nystrom, L., Whitaker, B. D., Winkler-Moser, С. J. K., Baer, D. J., Gebauer, S. K., Hicks, K.B. (2018). Phytosterols and their derivatives: Structural diversity, distribution, metabolism, analysis, and health-promoting uses. Prog. Lipid Res., 70, 35–61. https://doi.org/10.1016/j.plipres.2018.04.001.
Kriengsinyos, W., Wangtong, A., Komindr, S. (2015). Serum cholesterol reduction efficacy of biscuits with added plant stanol ester. Cholesterol, 2015. https://doi.org/10.1155/2015/353164
Chau, Y. P., Cheng, Y. C., Sing, C. W., Tsoi, M. F., Cheng, V. K. F., Lee, G. K. Y., Cheung, C.L., Cheung, B.M.Y. (2020). The lipid-lowering effect of once-daily soya drink fortified with phytosterols in normocholesterolaemic Chinese: A double-blind randomized controlled trial. Eur. J. Nutr., 59(6), 2739–2746.
https://doi.org/10.1007/s00394-019-02119-w
Talati, R., Sobieraj, D. M., Makanji, S. S., Phung, O. J., Coleman, C. I. (2010). The comparative efficacy of plant sterols and stanols on serum lipids: A systematic review and meta-analysis. J. Am. Diet. Assoc., 110(5), 719–726. https://doi.org/10.1016/j.jada. 2010.02.011
Zhu, H., Chen, J., He, Z., Hao, W., Liu, J., Kwek, E., Ma, K.Y., Bi, Y. (2019). Plasma cholesterol-lowering activity of soybean germ phytosterols. Nutrients, 11. https://doi.org/10.3390/nu11112784
Rouyanne, T. R., Johanna, M. G., Eike, A. T. (2014). LDL-cholesterol-lowering effect of plant sterols and stanols across different dose ranges: A meta-analysis of randomised controlled studies. Br. J. Nutr., 112, 214–219. https://doi.org/10.1017/s0007114514000750
Trautwein, E. A., Vermeer, M. A., Hiemstra, H., Ras, R. T. (2018). LDL-cholesterol lowering of plant sterols and stanols - Which factors influence their efficacy? Nutrients, 10. https://doi.org/10.3390/nu10091262
Nakano, T., Inoue, I., Takenaka, Y., Ikegami, Y., Kotani, N., Shimada, A., Noda, M., Murakoshi, T. (2018). Luminal plant sterol promotes brush border membrane-to-lumen cholesterol efflux in the small intestine. J. Clin. Biochem. Nutr., 63(2), 102–105. https://doi.org/10.3164/jcbn.17-116
Cedó, L., Farràs, M., Lee-Rueckert, M., & Escolà-Gil, J. C. (2019). Molecular insights into the mechanisms underlying the cholesterol-lowering effects of phytosterols. Curr. Med. Chem., 26(37), 6704–6723. https://doi.org/10.2174/0929867326666190822154701
Kaur, R., Myrie, S. B. (2020). Association of dietary phytosterols with cardiovascular disease biomarkers in humans. Lipids, 55(6), 569–584. https://doi.org/10.1002/lipd.12262
Orem, A., Alasalvar, C., Vanizor Kural, B., Yaman, S., Orem, C., Karadag, A., Pelvan, E., Zawistowski, J. (2017). Cardio-protective effects of phytosterol-enriched functional black tea in mild hypercholesterolemia subjects. J. Funct. Foods, 31, 311–319.
https://doi.org/10.1016/j.jff.2017.01.048
Poli, A., Marangoni, F., Corsini, A., Manzato, E., Marrocco, W., Martini, D., Medea, G., Visioli, F. (2021). Phytosterols, cholesterol control, and cardiovascular disease. Nutrients, 13(8), 2810.
https://doi.org/10.3390/nu13082810
Feng, S., Dai, Z., Liu, A. B., Huang, J., Narsipur, N., Guo, G., et al. (2018). Intake of stigmasterol and β-sitosterol alters lipid metabolism and alleviates NAFLD in mice fed a high-fat western-style diet. Biochim. Biophys. Acta, Mol. Cell Biol. Lipids, 1863(10), 1274–1284. https://doi.org/10.1016/j.bbalip.2018.08.004
Ghaedi, E., Varkaneh, H. K., Rahmani, J., Mousavi, S. M., Mohammadi, H., Fatahi, S., Pantovic, A., Mofrad, M.D., Zhang, Y. (2019). Possible antiobesity effects of phytosterols and phytostanols supplementation in humans: A systematic review and dose–response meta-analysis of randomized controlled trials. Phytother. Res., 33(5), 1246–1257. https://doi.org/10.1002/ptr.6319
Suttiarporn, P., Chumpolsri, W., Mahatheeranont, S., Luangkamin, S., Teepsawang, S., Leardkamolkarn, V. (2015). Structures of phytosterols and triterpenoids with potential anti-cancer activity in bran of black nonglutinous rice. Nutrients, 7(3), 1672–1687. https://doi.org/10.3390/nu7031672
Vilahur, G., Ben-Aicha, S., Diaz-Riera, E., Badimon, L., Padró, T. (2019). Phytosterols and inflammation. Curr. Med. Chem., 26(37), 6724–6734.
Raju, D., Sarmistha, M., Chayan, A. M., Fatimah, O. D., Abdul, H. M., Min, C. S., Soo, I.M. (2021). Phytosterols: targeting neuroinflammation in neurodegeneration. Curr. Pharm. Des., 27(3), 383–401. https://doi.org/10.2174/1381612826666200628022812
Burčová, Z., Kreps, F., Greifová, M., Jablonský, M., Ház, A., Schmidt, Š., Šurina, I. (2018). Antibacterial and antifungal activity of phytosterols and methyl dehydroabietate of Norway spruce bark extracts. J. Biotechnol., 282, 18–24. https://doi.org/10.1016/j.jbiotec.2018.06.340
Li, X., Zhang, Z., Cheng, J., Diao, C., Yan, Y., Liu, D., Wang, H., Zheng, F. (2019). Dietary supplementation of soybean-derived sterols regulates cholesterol metabolism and intestinal microbiota in hamsters. J. Funct. Foods, 59, 242–250. https://doi.org/10.1016/j.jff.2019.05.032
Prasad, M., Jayaraman, S., Eladl, M.A., El-Sherbiny, M., Abdelrahman, M.A.E., Veeraraghavan, V.P., Vengadassalapathy, S., Umapathy, V.R., Jaffer Hussain, S.F., Krishnamoorthy, K., Sekar, D., Palanisamy, C.P., Mohan, S.K., Rajagopal, P. (2022). A comprehensive review on therapeutic perspectives of phytosterols in insulin resistance: a mechanistic approach. Molecules, 27, 1595. https://doi.org/10.3390/molecules27051595
Li, X., Xin, Y., Mo, Y., Marozik, P., He, T., Guo, H. (2022). The Bioavailability and Biological Activities of Phytosterols as Modulators of Cholesterol Metabolism. Molecules, 27(2), 523.
https://doi.org/10.3390/molecules27020523
Feng, S.; Wang, L.; Shao, P.; Sun, P.; Yang, C.S. (2022). A review on chemical and physical modifications of phytosterols and their influence on bioavailability and safety, Crit. Rev. Food Sci. Nutr., 62(20), 5638–5657. https://doi.org/10.1080/10408398.2021.1888692
Yang, F., Oyeyinka, S. A., Ma, Y. (2016). Novel synthesis of phytosterol ester from soybean sterol and acetic anhydride. J. Food Sci., 81, C1629–C1635. https://doi.org/10.1111/1750-3841.13354
International Organization for Standardization. (2020). Animal and vegetable fats and oils – Determination of acid value and acidity. (ISO 660:2020). Geneva, Switzerland: International Organization for Standardization.
Wu, C.F.J., Michael S. Hamada, M.S. (2021). Experiments: Planning, Analysis, and Optimization, 3rd Edition. Hoboken, USA: John Wiley & Sons Inc.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Oles Honchar Dnipro National University
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).