INFLUENCE OF UNSATURATED ORGANIC ACID ANIONS ON THE PROCESS OF ELECTROOXIDATION OF MANGANESE AQUACOMPLEXES (II)

Authors

DOI:

https://doi.org/10.15421/jchemtech.v30i3.265467

Keywords:

complex compounds of manganese; fumaric and maleic acids; electrooxidation; DFT method.

Abstract

Using the methods of quantum-chemical modeling, the influence of unsaturated dibasic organic acids on the thermodynamic characteristics of the one-electron oxidation reaction of Mn2+ acidoacquacomplexes, which determine the basic level of energy efficiency of the electrochemical synthesis of MnO2 , was investigated. It is shown that the monodentate anionic forms of maleic (HM) and fumaric (HF) acids do not have any advantages over the anions of monocarboxylic acids, in particular, acetate ions. On the contrary, the formation of hydrogen bonds with intraspherical water molecules by the second carboxyl group, which is not bound to the central atom, significantly impairs the effectiveness of the influence of HM and HF anions on the stage of electron extraction from the complexes [Mn2+(L)(H2O)5]. The value of the standard redox potential E0 (Mn2+/Mn3+) of ionic systems with single-charged anions of maleic and fumaric acids is 1.05 V and 0.99 V, respectively, which is much higher than E0 (Mn2+/Mn3+) of acetate complexes (0.66 V), currently recommended for practical use. The presence in the internal coordination sphere of Mn2+ acid-acid complexes of bidentate-bonded double-charged maleic acid anion reduces E0 (Mn2+/Mn3+) to 0.32 V, which is twice less than in acetate electrolyte. The prospects of maleate electrolytes are also enhanced by the ability of unsaturated anions M2- to catalyze the disproportionation stage of Mn3+ complexes.

Author Biography

Kateryna A. Plyasovska, Oles Honchar Dnipro National University

Кафедра физической и неорганической химии, доц.

References

Li, L., Scott, K., Yu, E. H. (2013). A direct glucose alkaline fuel cell using MnO2 carbon nanocomposite supported gold catalyst for anode glucose oxidation. Journal of Power Sources, 221, 1–5. https://doi.org/10.1016/j.jpowsour.2012.08.021

Moulav, M. H., Kale, B. B., Bankar, D., Amalnerkar, D. P., Vinu, A., Kanade, K. G. (2018). Green synthetic methodology: An evaluative study for impact of surface basicity of MnO2 doped MgO nanocomposites in Wittig reaction. Journal of Solid State Chemistry, 269, 167–174.

https://doi.org/10.1016/j.jssc.2018.09.028

Tian, H., He, J., Liu, L., Wang, D., Hao, Z., Ma, C. (2012). Highly active manganese oxide catalysts for low-temperature oxidation of formaldehyde. Microporous and Mesoporous Materials, 151, 397–402. https://doi.org/10.1016/j.micromeso.2011.10.003

Wu, J., Yuan, H., Zhang, P., Zhang, H., Wu, Y. (2016). Synthesis of glucuronic acid by heterogeneous selective oxidation with active MnO2 characterized generally. Reaction Kinetics, Mechanisms and Catalysis, 117, 319–328. doi: 10.1007/s11144-015-0930-4

Ye, D., Li, H., Liang, G., Luo, J., Zhang, X., Zhang, S., Chen, H., Kong, J. (2013). A three-dimensional hybrid of MnO2 /graphene/carbon nanotubes based sensor for determination of hydrogen-peroxide in milk. Electrochimica Acta, 109, 195-200. http://dx.doi.org/10.1016/j.electacta.2013.06.119

Wang, P., Sun, S., Wang, S., Zhang, Y., Zhang, G., Li, Y., Li, S., Zhou, C., Fang, S. (2017). Ultrastable MnO2 nanoparticle/three-dimensional N-doped reduced graphene oxide composite as electrode material for supercapacitor. Journal of Applied Electrochemistry, 47(12), 1293–1303. https://link.springer.com/article/10.1007/s10800-017-1122-x

Prasad, K. R., Miura N. (2004). Polyaniline-MnO2 composite electrode for high energy density electrochemical capacitor. Electrochemical and Solid-State Letters, 7(11), A425–A428. https://doi.org/10.1149/1.1805504

Wei, W., Cui, X., Chen, W., Ivey D. G. (2011). Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chemical Society Reviews, 40(3), 1697–1721.

https://doi.org/10.1039/c0cs00127a

Yadav, G. G., Wei, X., Gallaway, J. W., Chaudhry, Z., Shin, A., Huang, J., Yakobov, R., Nyce, M., Vanderklaauw, N., Banerjee, S. (2017). Rapid electrochemical synthesis of δ-MnO2 from γ-MnO2 and unleashing its performance as an energy dense electrode. Materials Today Energy, 6, 198–210. https://doi.org/10.1016/j.mtener.2017.10.008

Yakymenko, L. M. (1977). [Electrode materials in applied electrochemistry]. Moscow: Chimiya. (in Russian).

Rusi, Majid S.R. (2014). Controlled synthesis of flower-like α-MnO2 as electrode for pseudocapacitor application. Solid State Ionics, 262, 220–225.

https://doi.org/10.1016/j.ssi.2013.10.003

Poltavets, V. V. , Vargalyuk, V. F., Shevchenko, L. V. (2015). The peculiarities of electrooxidation of Mn2+ to MnO2 in acetate electrolyte. Bulletin of Dnipropetrovsk University. Series Chemistry, 23(2), 27–31. https://doi.org/10.15421/081515

Poltavets, V. V., Vargalyuk, V. F., Seredyuk, V. A., Shevchenko, L. V. (2018). The Mechanism of Electrooxidation of Mn2+ ions. Journal of Chemistry and Technologies, 26(2), 1–11.

https://doi.org/10.15421/0817260201

Poltavets, V. V., Vargalyuk, V. F., Shevchenko, L. V. (2018). Express-method for Estimation of Electrocatalytic Activity of Oxide Films toward Oxygen Transfer Reactions. Universal Journal of Chemistry, 6(2), 15–20. doi: 10.13189/ujc.2018.060201

Poltavets, V. V. , Hruzdieva, E. V. (2011). [Manganese dioxide as an electrode material]. Bulletin of Dnipropetrovsk University. Series Chemistry, 19(17), 34–38. (in Russian).

https://www.dnu.dp.ua/visnik/fhim/6

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery Jr. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B., Fox, D. J. (2016). Gaussian 16, Revision B.01, Gaussian, Inc., Wallingford CT, GaussView 5.0. Wallingford, E.U.A.

Wachters, A. J. H. (1970). Gaussian Basis Set for Molecular Wavefunctions Containing Third-Row Atoms. The Journal of Chemical Physics, 52(3), 1033–1036. ttps://doi.org/10.1063/1.1673095

Becke, A. D. (1993). Density-Functional Thermochemistry. III. The Role of Exact Exchange. The Journal of Chemical Physics, 98(7), 5648–5656. https://doi.org/10 .1063/1.464913

Lee, C., Yang, W., Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical review B 50th Anniversary Milestones, 37(2), 785. https://doi.org/10.1103/PhysRevB.37.785

Barone, V., Cossi, M., Tomasi, J. (1998). Geometry optimization of molecular structures in solution by the polarizable continuum model. Journal of Computational Chemistry, 19(4), 404–417. https://doi.org/10.1002/(SICI)1096-987X(199803)19:4<404::AID-JCC3>3.0.CO;2-W

Tomasi, J., Mennucci, B., Cammi, R. (2005). Quantum Mechanical Continuum Solvation Models. Chemical Reviews, 105(8), 2999–3094. https://doi.org/10.1021/cr9904009

Seredyuk, V. A., Vargalyuk, V. F. (2008). [Estimation of reliability of quantum-chemical calculations of electronic transitions in aqua complexes of transition metals]. Russian Journal of Electrochemistry, 44(10), 1105–1112.

Ye, Y., Sun, X., Zhang, Y, Han, X., Sun, X. (2022). A novel cell-based electrochemical biosensor based on MnO2 catalysis for antioxidant activity evaluation of anthocyanins. Biosensors and Bioelectronics, 202, 113990. doi: 10.1016/j.bios.2022.113990

Huang, Z. , Zou, J., Yu, J. (2020). Facile and Rapid Fabrication of Petal-like Hierarchical MnO2 Anchored SWCNTs Composite and its Application in Amperometric Detection of Hydrogen Peroxide. Journal of The Electrochemical Society, 167, 067505. doi: 10.1149/1945-7111/ab7e1e

Tian, Y., Deng, P., Wu, Y., Li, J., Liu, J., Li, G., He, Q. (2020). MnO2 Nanowires-Decorated Reduced Graphene Oxide Modified Glassy Carbon Electrode for Sensitive Determination of Bisphenol A. Journal of The Electrochemical Society, 167, 046514. doi: 10.1149/1945-7111/ab79a7

Li, S. , Lv, M.-M., Meng, J., Zhao, L. (2018). A 3D composite of gold nanoparticle-decorated MnO2 -graphene-carbon nanotubes as a novel sensing platform for the determination of nitrite. Ionics, 24, 3177–3186. doi: 10.1007/s11581-017-2426-x

Dawadi, S., Gupta, A., Khatri, M., Budhathoki, B., Lamichhane, G., Parajuli, N. (2020). Manganese dioxide nanoparticles: synthesis, applications and challenges. Bulletin of Materials Science, 43, 277. https://doi.org/10.1007/s12034-020-02247-8

Siddiqui, S. I., Manzoor, O., Mohsin, M., Chaudhry, S. A. (2019). Nigella sativa seed based nanocomposite-MnO2 /BC: An antibacterial material for photocatalytic degradation, and adsorptive removal of Methylene blue from water. Environmental Research, 171, 328–340. https://doi.org/10.1016/j.envres.2018.11.044

Hastuti, E., Subhan, A., Amonpattaratkit, P., Zainuri, M., Suasmoro, S. (2021). The effects of Fe-doping on MnO2: phase transitions, defect structures and its influence on electrical properties. Royal Society of Chemistry Advances, 11, 7808–7823. doi: 10.1039/D0RA10376D

Julien, C. M., Mauger, A. (2017). Nanostructured MnO2 as Electrode Materials for Energy Storage. Nanomaterials, 7(11), 396. https://doi.org/10.3390/nano7110396

Hashem, A. M., Abuzeid, H., Kaus, M., Indris, S., Ehrenberg, H., Mauger, A., Julien, C.M. (2018). Green synthesis of nanosized manganese dioxide as positive electrode for lithium-ion batteries using lemon juice and citrus peel. Electrochimica Acta, 262. doi : 10.1016/j.electacta.2018.01.024

Shaeri, M. A., Bagheri Mohagheghi, M. M. (2022). Synthesis and Electrochemical Properties of Layered Birnessite MnO2 /Activated Carbon Nanocomposite. Journal of Electronic Materials, 51(5), 1–21. doi:10.1007/s11664-022-09499-6

El-Nemr, K. F., Balboul, M. R., Ali, M. A. (2014). Electrical and mechanical properties of manganese dioxide-magnetite-filled acrylonitrile butadiene rubber blends. Journal of Thermoplastic Composite Materials, 29(5), 704–716. https://doi.org/10.1177/0892705714533372

Xia, H.-Y., Li, B.-Y., Zhao, Y., Han, Y.-H., Wang, S.-B., Chen, A.-Z., Kankala, R.K. (2022). Nanoarchitectured manganese dioxide (MnO2)-based assemblies for biomedicine. Coordination Chemistry Reviews, 464 (2017). https://doi.org/10.1016/j.ccr.2022.214540

Wu, M., Hou, P., Dong, L., Cai, L., Chen, Z., Zhao, M., Li, J. (2019). Manganese dioxide nanosheets: From preparation to biomedical applications. International Journal of Nanomedicine, 14, 4781–4800.

doi: 10.2147/IJN.S207666

Majidi, M. R., Farahani, F. S., Hosseini, M., Ahadzadeh, I. (2019). Low-cost nanowired α-MnO2 /C as an ORR catalyst in air-cathode microbial fuel cell. Bioelectrochemistry, 125, 38–45.

https://doi.org/10.1016/j.bioelechem.2018.09.004

Siwawongkasem, K., Senanon, W., Maensiri, S. (2022). Hydrothermal Synthesis, Characterization, and Electrochemical Properties of MnO2 -Titanate Nanotubes (MnO2 -TNTs). Journal of Electronic Materials, 51, 3188–3204. doi:10.1007/s11664-022-09550-6

Redkin, A. N., Mitina, A. A., Yakimov, E. E. (2022). Binder-Free MnO2 /MWCNT/Al Electrodes for Supercapacitors. Nanomaterials, 12(17), 2922. https://doi.org/10.3390/nano12172922

Kalarikkandy, A. V., Sree, N., Ravichandran, S., Dheenadayalan, G. (2022). Copolymer-MnO2 nanocomposites for the adsorptive removal of organic pollutants from water. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-022-22137-2

Downloads

Published

2022-10-31

Issue

Section

Physical and inorganic chemistry