arylglyoxals; N-alkoxy-N’-arylureas; synthesis; 3-alkoxy-5-aryl-4,5-dihydroxy-1-phenylimidazolidin-2-ones; 3-alkoxy-5-aryl-1-phenylimidazolidine-2,4-diones.


Aim. To investigate the 4-X-phenylglyoxal (X = F, Cl, Br) interaction with N-alkoxy-N’-arylureas in acetic acid medium at room temperature. Methods. Mass spectrometry, 1H and 13C NMR spectroscopy. Results. We have showed these reaction type peculiarities and several different tendencies depending on the aryl glyoxal moiety structure. In this article we have described the influence of this moiety at the stage of the hydantoin formation. It has been found that the 4-fluorophenylglyoxal hydrate interacts with N-methoxy-N’-phenylurea in acetic acid during 99 h at 26 °C yielding the mixture of 5-(4-fluorophenyl)-cis-4,5-dihydroxy-3-methoxy-1-phenylimidazolidin-2-one, 5-(4-fluorophenyl)-trans-4,5-dihydroxy-3-methoxy-1-phenylimidazolidin-2-one, and 5-(4-fluorophenyl)-3-methoxy-1-phenylimidazolidine-2,4-dione. The 5-(4-fluorophenyl)-3-methoxy-1-phenylimidazolidine-2,4-dione is yielded because of the additional exposure the products mixture in acetic acid during 260 h. The 4-chlorophenylglyoxal hydrate reacts with N-ethoxy-N’-phenylurea in acetic acid at 26–27 °C during 219 h yielding the mixture of 5-(4-chlorophenyl)-3-ethoxy-cis-4,5-dihydroxy-1-phenylimidazolidin-2-one and 5-(4-chlorophenyl)-3-ethoxy-1-phenylimidazolidine-2,4-dione. After being processed by the p-toluenesulfonic acid this mixture is converted in pure 5-(4-chlorophenyl)-3-ethoxy-1-phenylimidazolidine-2,4-dione. 4-Bromophenylglyoxal hydrate interacts with N-n-butyloxy-N’-phenylurea in acetic acid during 52 h at 26 °C yielding only the mixture of the diastereomers of 5-(4-bromophenyl)-3-n-butyloxy-4,5-dihydroxy-1-phenylimidazolidin-2-one. The molar ratio of 5-(4-bromophenyl)-3-n-butyloxy-cis-4,5-dihydroxy-1-phenylimidazolidin-2-one and 5-(4-bromophenyl)-3-n-butyloxy-trans-4,5-dihydroxy-1-phenylimidazolidin-2-one is 91 : 9. The diastereomers of 5-(4-bromophenyl)-3-n-butyloxy-4,5-dihydroxy-1-phenylimidazolidin-2-one were converted into 5-(4-bromophenyl)-3-n-butyloxy-1-phenylimidazolidine-2,4-dione because of the p-toluenesulfonic acid action. As a conclusion we have proposed the possible mechanism of 3-alkoxy-5-aryl-4,5-dihydroxy-1-phenylimidazolidin-2-ones conversion into 3-alkoxy-5-aryl-1-phenylhydantoins. Conclusions. It has been found that the 4-halogenophenylglyoxal interaction with N-alkoxy-N’-phenylureas in acetic acid at room temperature under the further processing by of p-toluenesulfonic acid is new way to synthetize 3-alkoxy-5-(4-halohenophenyl)-1-phenylhydantoins. It has been shown that there is a certain tendency depending on the 4-halogenophenyl substituent nature of the influence on the reaction.


Meusel, M., Gutschow, M. (2004). Recent Developmments in Hydantoin Chemistry. A Review. Org. Prep.Proced. Int., 36(5), 391–443.

Yang, C.; Schanne, F.A.X.; Yoganathan, S.; Stephani, R.A. (2016). Synthesis os N-1’,N-3’-disubstituted spirohydantoins and their anticonvulsant activities in pilocarpine model of temporal lobe epipepsy. Bioorg. Med. Chem. Lett., 26(12), 2912–2914. http://

Sadarangani, I.R., Bhatia, S., Amarante, D., Lengyel, I., Stephani, R.A. (2012). Synthesis, resolution and anticonvulsant activity of chiral N-1’-ethyl,N-3’-(1-phenylethyl)-(R,S)-2’H,3H,5’H-spiro-(2-benzofuran-1.4’-imidazolidine)-2’,3,5’-trione diastereomers. Bioorg. Med. Chem. Lett., 22(7), 2507–2509. http://

Konnert, L., Lamaty, F., Martinez, J., Colacino, E. (2017). Recent Advances in the Synthesis of Hydantoins: The State of the Art of Valuable Scaffold, Chem. Rev., 117(23), 13757–13809; doi: 10.1021/acs.chemrev.7b00067.

Hulme, C., Ma., L., Romano, J., Morton, J., Tang, S-Y., Cherrier, M.-P., Choi, S., Salvino, J., Labaudiniere, R. (2000). Novel Applications of Carbon Dioxide|MeOH for the Synthesis of Hydantoins and Cyclic Ureas Via the Ugi Reactions. Tetrahedron Lett., 41, 1889–1893.

Lengyel, I.; Patel, H.J.; Stephani, R.A. (2007). The preparation and characterization of ninetheen new phtalidyl spirohydantoins. Heterocycles., 73, 349–375.

Patel, H.J., Sarra, J., Caruso, F., Rossi, M., Doshi, U., Stephani, R.A. (2006). Synthesis and anticonvulsant activity of new N-1’,N-3’-disubstituted-2’H,3H,5’H-spiro-(2-benzofuran-1,4’-imidazolidine)-2’,3,5’-triones. Bioorg.Med.Chem.Lett., 16(17), 4644–4647. doi:10.1016/j.bmcl.2006.05.102

Savjani, J. K., Gajjar, A.K. (2011). Pharmauceutical importance and Synthethic Strategies for imidazolidin-2-thione and Imidazol-2-thione Derivatives. Pak. J. Biol. Sci., 14, 1076–1089.

Staake, M.D., Kashinatham, A., McMorris, T.C., Estes, L.A., Kelner, M.J. (2016). Hydroxyurea derivatives of irofulven with improved antitumor efficacy. Bioorg. Med. Chem. Lett., 26(7), 1836–1838. doi:10.1016/j.bmcl.2016.02.028

Eftekhari-Sis, B., Zirak, M., Akrabi, A. (2013). Arylglyoxals in Synthesis of Heterocyclic Compounds, Chem. Rev., 113(5), 2958–3043; DOI: 10.1021/cr300176g

Shtamburg, V.G., Anishchenko, A.A., Shtamburg, V.V., Shishkin, O.V., Zubatyuk, R.I., Mazepa, A.V., Rakipov, I.M., Kostyanovsky, R.G. (2008). Synthesis and crystal structure of new imidazolidine-2,4-dione and imidazolidin-2-one derivatives, Mendeleev Commun., 18, 102–104. doi: 10.1016/j.mencom.2008.03.018.

Shtamburg, V.G., Shtamburg, V.V., Anishchenko, A.A., Zubatyuk R.I., Mazepa, A.V., Klotz, E.A., Kravchenko, S.V., Kostyanovsky, R.G. (2015). Single-stage synthesis of 3-hydroxy- and 3-alkoxy-5-arylimidazolidine-2,4-diones by reaction of arylglyoxal hydrates with N-hydroxy- and N-alkoxyureas, Chem. Heterocycl. Comp., 51(6), 553–559. doi 10.1007/s10593-015-1735-0.

Shtamburg, V.G., Shtamburg, V.V., Anishchenko, A.A., Shishkina, S.V., Mazepa, A.V., Konovalova, I.S. (2020). Interactions of Ninhydrin with N-Hydroxyurea and N-Alkoxyureas in Acetic Acid. Eur. Chem. Bull., 9(5), 125–131. http:/

Shtamburg, V.G., Shtamburg, V.V., Anishchenko, A.A., Rusanov, E.B., Kravchenko, S.V., Mazepa, A.V. (2021). The Interaction of the 4-Carboxyphenylglyoxal with N-Hydroxyurea and N-Alkoxy-N’-alkyl(aryl)ureas. The Structure of 5-(Carboxyphenyl)-4,5-dihydroxy-1-methyl-3-propyloxyimidazolidin-2-one. Journal of Chemistry and Technologies, 29(4), 518–527; doi: 10.15421/jchemtech.v29i4.233171

Shtamburg, V.G., Shtamburg, V.V., Anishchenko, A.A. (2020). Mazepa, A.V. The peculiarities of the 4-Carboxyphenylglyoxal and N-Alkoxy-N’-arylureas interaction. Eur. Chem. Bull., 9(11), 339–344, http:/

Shtamburg, V.G., Shtamburg, V.V., Anishchenko, A. A., Mazepa, A.V., Rusanov, E.B. (2022). 3-Alkoxy-1,5-bis(aryl)imidazolidine-2,4-diones, synthesis and structure. J. Mol. Struct., 1264, 133259;

Shtamburg, V.G., Shtamburg, V.V., Anishchenko, A.A., Shishkina, S.V., Mazepa, A.V., Konovalova, I.S. (2019). 3-Alkoxy-1,5-diaryl-4,5-dihydroxyimidazolidin-2-ones and 3-Alkoxy-1-alkyl-5-aryl-4,5-dihydroxyimidazo-lidin-2-ones: Synthesis and Structure. Eur. Chem. Bull., 8(9), 282–290. http:/

Shtamburg, V.G., Shtamburg, V.V., Anishchenko, A.A., Mazepa, A.V., Shishkina, I.S., Konovalova, S.V. (2019). Synthesis and structure of 3,4,5-trihydroxy-5-(4-nitrophenyl)imidazolidin-2-one. Eur. Chem. Bull., 8(4), 110–114, doi: 10.17628/ecb.2019.8.110-114

Kostyanovsky, R.G., Shtamburg, V.G., Shishkin, O.V., Zubatyuk, R.I., Shtamburg, V.V., Anishchenko, A.A., Mazepa, A.V. (2010). Pyramidal nitrogen in the crystal of N-[(benzoyl)-(hydroxy)methyl]-N-benzyloxy-N’-(2-bromophenyl)urea. Mendeleev Commun., 20(3), 167–169,

Shtamburg, V.G., Shtamburg, V.V., Anishchenko, A.A., Rusanov, E.B., Kravchenko, S.V. (2021). The Structure of 1-Ethoxy-3a,8a-dihydroxy-3-(1-naphthyl)methyl-1,3,3a,8a-tetrahydroindeno[1,2-d]imidazole-2,8-dione. Journal of Chemistry and Technologies, 29(2), 232–239,

Shtamburg, V.G., Anishchenko, A.A., Shtamburg, V.V., Pletenez, A.V., Zubatyuk, R.I., Shishkin, O.V. (2011). Synthesis and structure of N-[(benzoyl)-(hydroxy)methyl]-N-ethoxy-N’-(2-bromophenyl)urea. Voprosy Khimii i Khim. Technology, (5), 13–17 (In Russian).

Perronnet, J., Demoute, J.P. (1982). Approach to the 1-methoxy-2-benzimidazolinones. Gazz. Chim. Ital., 112, 507–511.