USING OF BARLEY BRAN IN THE PRODUCTION OF ALTERNATIVE SOLID FUEL FROM COFFEE PRODUCTION WASTE
DOI:
https://doi.org/10.15421/jchemtech.v31i2.274932Keywords:
biomass, coffee production waste, spent coffee grounds, barley bran, secondary raw materials, solid fuel, briquettesAbstract
The article describes the results of experimental studies on the production of alternative solid fuels from coffee production waste – coffee production waste and barley bran. Briquetted samples of solid fuels with 0 : 100, 25 : 75, 50 : 50 and 75 : 25 % wt. of coffee production waste and barley bran, respectively, were made. The influence of the content of the initial components on the main parameters of the created solid fuel briquettes was researched. It was determined that the higher calorific value of the obtained samples is in the range of ~17329÷22147 kJ/kg, and their ash content is 0.6÷2.45 % by weight. It is shown that with an increase in the content of coffee production waste in solid fuel samples, the calorific value increases and at the same time the ash content of the samples decreases. The creation of composite solid fuel briquettes makes it possible to use coffee production waste more rationally and regulate the main indicators of solid fuel to meet existing standards by means of the content of the components of the initial mixture.
References
Miao, Z., Zhang, P., Li, M., Wan, Y., Meng, X. (2019). Briquette preparation with biomass binder. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–11. https://doi.org/10.1080/15567036.2019.1682722
Ivashchuk, O. S., Atamanyuk, V. M., Chyzhovych, R. A., Kiiaieva, S. S., Zherebetskyi, R. R., Sobechko, I. B. (2022) Preparation of an alternate solid fuel from alcohol distillery stillage. Vopr. Khim. Khim. Tekhnol., 1, 54–59.
https://doi.org/10.32434/0321-4095-2022-140-1-54-59
Ivashchuk, O. S., Atamanyuk, V. M., Chyzhovych, R. A., Kiiaieva, S. S., Duleba, V.P., Sobechko, I. B. (2022). Research of solid fuel briquettes obtaining from brewer’s spent grain. Journal of Chemistry and Technologies, 30(2), 216–221.
https://doi.org/10.15421/jchemtech.v30i2.256749
Ivashchuk, O. S., Atamanyuk, V. M., Chyzhovych, R. A., Sobechko, I. B. (2022). Using coffee production waste as a raw material for solid fuel. Journal of Chemistry and Technologies, 30(4), 588–594.
https://doi.org/10.15421/jchemtech.v30i4.265116
Mikulski, D., Kłosowski, G. (2020). Hydrotropic pretreatment on distillery stillage for efficient cellulosic ethanol production. Bioresour. Technol., 300, 122661. https://doi.org/10.1016/j.biortech.2019.122661
Mukhametzyanov, S. R., Safin, R. R., Ilalova, G. F., Mukhtarova, A. R., Shageeva, A. I. (2020). Alternative energy in vegetable and crushed wood raw materials drying processes. IOP Conference Series: Earth and Environmental Science, 507(1), 012024. https://doi.org/10.1088/1755-1315/507/1/012024
Khaloahmadi, A., Borghei, A. M., Roustpoor, O. R. (2021). Evaluate the drying of food waste using cabinet dryer. https://doi.org/10.21203/rs.3.rs-874515/v1
Kim, B.-S., Kang, C.-N., Jeong, J.-H. (2014). A study on a high efficiency dryer for food waste. Journal of the Korea Society For Power System Engineering, 18(6), 153–158. https://doi.org/10.9726/kspse.2014.18.6.153
Routray, W., Chetry, R., Jena, B. S. (2022). Drying of food industry and agricultural waste: Current scenario and future perspectives. Drying Technol., 1–27. https://doi.org/10.1080/07373937.2022.2118767
Mohd-Faizal, A. N., Mohd-Shaid, M. S., Ahmad-Zaini, M. A. (2022). Solid fuel briquette from biomass: Recent trends. Ovidius Univ. Ann. Chem., 33(2), 150–155. https://doi.org/10.2478/auoc-2022-0022
Sunnu, A. K., Adu-Poku, K. A., Ayetor, G. K. (2021). Production and characterization of charred briquettes from various agricultural waste. Combust. Sci. Technol., 195(5), 1000–1021. https://doi.org/10.1080/00102202.2021.1977803
Atamanyuk V. M., Mosyuk M.I., Ivashchuk O.S., Zaharkiv O.V (2016). Kinetyka filtratsiinogo sushinnya podribnenogo miskantusa [Kinetics of filtration drying of crushed miscanthus]. Naukovyi Visnyk Natsionalnogo Lisotekhnichnogo Universytetu Ukrayiny; 26(8): 257-264. (in Ukrainian). https://doi.org/10.15421/40260840
Kindzera, D., Hosovskyi, R., Atamanyuk, V., Symak, D. (2021). Heat transfer process during filtration drying of grinded sunflower biomass. Chem. Chem. Technol., 15(1), 118–124.
https://doi.org/10.23939/chcht15.01.118
Kim, J.H., Lee, Y.T. (2004). Effects of barley bran on the quality of sugar-snap cookie and muffin. Journal of the Korean Society of Food Science and Nutrition, 33(8), 1367–1372.
https://doi.org/10.3746/jkfn.2004.33.8.1367
Zheng, X., Li, L., Wang, Q. (2011). Distribution and molecular characterization of β-glucans from hull-less barley bran, shorts and flour. Int. J. Mol. Sci., 12(3), 1563–1574.
https://doi.org/10.3390/ijms12031563
Karimi, R., Azizi, M. H., Xu, Q. (2019). Effect of different enzymatic extractions on molecular weight distribution, rheological and microstructural properties of barley bran β-glucan. Int. J. Biol. Macromol., 126, 298–309. https://doi.org/10.1016/j.ijbiomac.2018.12.165
Zheng, Q., Wang, Z., Xiong, F., Song, Y., Zhang, G. (2023). Effect of pearling on nutritional value of highland barley flour and processing characteristics of Noodles. Food Chemistry: X, 17, 100596. https://doi.org/10.1016/j.fochx.2023.100596
Liu, H., Li, Y., You, M., Liu, X. (2021). Comparison of physicochemical properties of β-glucans extracted from hull-less barley bran by different methods. Int. J. Biol. Macromol., 182, 1192–1199.
https://doi.org/10.1016/j.ijbiomac.2021.05.043
Bhatty, R. S. (1995). Laboratory and pilot plant extraction and purification of β-glucans from hull-less barley and Oat Brans. J. Cereal Sci., 22(2), 163–170.
https://doi.org/10.1016/0733-5210(95)90046-2
Du, B., Zhu, F., Xu, B. (2014). Β-glucan extraction from bran of hull-less barley by accelerated solvent extraction combined with response surface methodology. J. Cereal Sci., 59(1), 95–100. https://doi.org/10.1016/j.jcs.2013.11.004
Ren, Y., Xie, H., Liu, L., Jia, D., Yao, K., Chi, Y. (2018). Processing and prebiotics characteristics of β-glucan extract from Highland Barley. Appl. Sci., 8(9), 1481. https://doi.org/10.3390/app8091481
Woo, D.-G., Kim, S. H., Kim, T. H. (2021). Solid fuel characteristics of pellets comprising spent coffee grounds and wood powder. Energies, 14(2), 371. https://doi.org/10.3390/en14020371
Chen, Y.-C., Chen, L.-Y. (2021). Pelleting spent coffee grounds by waste utensils as binders of biofuels. J. Environ. Chem. Eng., 9(3), 105006. https://doi.org/10.1016/j.jece.2020.105006
Ivashchuk, O. S., Atamanyuk, V. M., Gnativ, Z. Ya., Chyzhovych, R. A., Zherebetskyi, R. R. (2021). Research into kinetics of filtration drying of alcohol distillery stillage. Vopr. Khim. Khim. Tekhnol., 4, 58–65.
https://doi.org/10.32434/0321-4095-2021-137-4-58-65
Ivashchuk, O. S., Atamanyuk, V. M., Chyzhovych, R. A., Kuzminchuk, T. A., Zherebetskyi, R. R., Kiiaieva, S. S. (2021). Research of the calorific value of dried alcohol distillery stillage. Chem. Technol. Eng., Proc., 4, 58–65.
https://doi.org/10.23939/cte2021.01.200
Wróbel, M., Jewiarz, M., Mudryk, K., Knapczyk, A. (2020). Influence of raw material drying temperature on the Scots pine (pinus sylvestris L.) biomass agglomeration process—a preliminary study. Energies, 13(7), 1809. https://doi.org/10.3390/en13071809
García-Maraver, A., Popov, V., Zamorano, M. (2011). A review of European standards for pellet quality. Renewable Energy, 36(12), 3537–3540. https://doi.org/10.1016/j.renene.2011.05.013
Olugbade, T., Ojo, O., Mohammed, T. (2019). Influence of binders on combustion properties of biomass briquettes: A recent review. BioEnergy Res., 12(2), 241–259. https://doi.org/10.1007/s12155-019-09973-w
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Oles Honchar Dnipro National University
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).