USING OF BARLEY BRAN IN THE PRODUCTION OF ALTERNATIVE SOLID FUEL FROM COFFEE PRODUCTION WASTE

Authors

DOI:

https://doi.org/10.15421/jchemtech.v31i2.274932

Keywords:

biomass, coffee production waste, spent coffee grounds, barley bran, secondary raw materials, solid fuel, briquettes

Abstract

The article describes the results of experimental studies on the production of alternative solid fuels from coffee production waste coffee production waste and barley bran. Briquetted samples of solid fuels with 0 : 100, 25 : 75, 50 : 50 and 75 : 25 % wt. of coffee production waste and barley bran, respectively, were made. The influence of the content of the initial components on the main parameters of the created solid fuel briquettes was researched. It was determined that the higher calorific value of the obtained samples is in the range of ~17329÷22147 kJ/kg, and their ash content is 0.6÷2.45 % by weight. It is shown that with an increase in the content of coffee production waste in solid fuel samples, the calorific value increases and at the same time the ash content of the samples decreases. The creation of composite solid fuel briquettes makes it possible to use coffee production waste more rationally and regulate the main indicators of solid fuel to meet existing standards by means of the content of the components of the initial mixture.

References

Miao, Z., Zhang, P., Li, M., Wan, Y., Meng, X. (2019). Briquette preparation with biomass binder. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–11. https://doi.org/10.1080/15567036.2019.1682722

Ivashchuk, O. S., Atamanyuk, V. M., Chyzhovych, R. A., Kiiaieva, S. S., Zherebetskyi, R. R., Sobechko, I. B. (2022) Preparation of an alternate solid fuel from alcohol distillery stillage. Vopr. Khim. Khim. Tekhnol., 1, 54–59.

https://doi.org/10.32434/0321-4095-2022-140-1-54-59

Ivashchuk, O. S., Atamanyuk, V. M., Chyzhovych, R. A., Kiiaieva, S. S., Duleba, V.P., Sobechko, I. B. (2022). Research of solid fuel briquettes obtaining from brewer’s spent grain. Journal of Chemistry and Technologies, 30(2), 216–221.

https://doi.org/10.15421/jchemtech.v30i2.256749

Ivashchuk, O. S., Atamanyuk, V. M., Chyzhovych, R. A., Sobechko, I. B. (2022). Using coffee production waste as a raw material for solid fuel. Journal of Chemistry and Technologies, 30(4), 588–594.

https://doi.org/10.15421/jchemtech.v30i4.265116

Mikulski, D., Kłosowski, G. (2020). Hydrotropic pretreatment on distillery stillage for efficient cellulosic ethanol production. Bioresour. Technol., 300, 122661. https://doi.org/10.1016/j.biortech.2019.122661

Mukhametzyanov, S. R., Safin, R. R., Ilalova, G. F., Mukhtarova, A. R., Shageeva, A. I. (2020). Alternative energy in vegetable and crushed wood raw materials drying processes. IOP Conference Series: Earth and Environmental Science, 507(1), 012024. https://doi.org/10.1088/1755-1315/507/1/012024

Khaloahmadi, A., Borghei, A. M., Roustpoor, O. R. (2021). Evaluate the drying of food waste using cabinet dryer. https://doi.org/10.21203/rs.3.rs-874515/v1

Kim, B.-S., Kang, C.-N., Jeong, J.-H. (2014). A study on a high efficiency dryer for food waste. Journal of the Korea Society For Power System Engineering, 18(6), 153–158. https://doi.org/10.9726/kspse.2014.18.6.153

Routray, W., Chetry, R., Jena, B. S. (2022). Drying of food industry and agricultural waste: Current scenario and future perspectives. Drying Technol., 1–27. https://doi.org/10.1080/07373937.2022.2118767

Mohd-Faizal, A. N., Mohd-Shaid, M. S., Ahmad-Zaini, M. A. (2022). Solid fuel briquette from biomass: Recent trends. Ovidius Univ. Ann. Chem., 33(2), 150–155. https://doi.org/10.2478/auoc-2022-0022

Sunnu, A. K., Adu-Poku, K. A., Ayetor, G. K. (2021). Production and characterization of charred briquettes from various agricultural waste. Combust. Sci. Technol., 195(5), 1000–1021. https://doi.org/10.1080/00102202.2021.1977803

Atamanyuk V. M., Mosyuk M.I., Ivashchuk O.S., Zaharkiv O.V (2016). Kinetyka filtratsiinogo sushinnya podribnenogo miskantusa [Kinetics of filtration drying of crushed miscanthus]. Naukovyi Visnyk Natsionalnogo Lisotekhnichnogo Universytetu Ukrayiny; 26(8): 257-264. (in Ukrainian). https://doi.org/10.15421/40260840

Kindzera, D., Hosovskyi, R., Atamanyuk, V., Symak, D. (2021). Heat transfer process during filtration drying of grinded sunflower biomass. Chem. Chem. Technol., 15(1), 118–124.

https://doi.org/10.23939/chcht15.01.118

Kim, J.H., Lee, Y.T. (2004). Effects of barley bran on the quality of sugar-snap cookie and muffin. Journal of the Korean Society of Food Science and Nutrition, 33(8), 1367–1372.

https://doi.org/10.3746/jkfn.2004.33.8.1367

Zheng, X., Li, L., Wang, Q. (2011). Distribution and molecular characterization of β-glucans from hull-less barley bran, shorts and flour. Int. J. Mol. Sci., 12(3), 1563–1574.

https://doi.org/10.3390/ijms12031563

Karimi, R., Azizi, M. H., Xu, Q. (2019). Effect of different enzymatic extractions on molecular weight distribution, rheological and microstructural properties of barley bran β-glucan. Int. J. Biol. Macromol., 126, 298–309. https://doi.org/10.1016/j.ijbiomac.2018.12.165

Zheng, Q., Wang, Z., Xiong, F., Song, Y., Zhang, G. (2023). Effect of pearling on nutritional value of highland barley flour and processing characteristics of Noodles. Food Chemistry: X, 17, 100596. https://doi.org/10.1016/j.fochx.2023.100596

Liu, H., Li, Y., You, M., Liu, X. (2021). Comparison of physicochemical properties of β-glucans extracted from hull-less barley bran by different methods. Int. J. Biol. Macromol., 182, 1192–1199.

https://doi.org/10.1016/j.ijbiomac.2021.05.043

Bhatty, R. S. (1995). Laboratory and pilot plant extraction and purification of β-glucans from hull-less barley and Oat Brans. J. Cereal Sci., 22(2), 163–170.

https://doi.org/10.1016/0733-5210(95)90046-2

Du, B., Zhu, F., Xu, B. (2014). Β-glucan extraction from bran of hull-less barley by accelerated solvent extraction combined with response surface methodology. J. Cereal Sci., 59(1), 95–100. https://doi.org/10.1016/j.jcs.2013.11.004

Ren, Y., Xie, H., Liu, L., Jia, D., Yao, K., Chi, Y. (2018). Processing and prebiotics characteristics of β-glucan extract from Highland Barley. Appl. Sci., 8(9), 1481. https://doi.org/10.3390/app8091481

Woo, D.-G., Kim, S. H., Kim, T. H. (2021). Solid fuel characteristics of pellets comprising spent coffee grounds and wood powder. Energies, 14(2), 371. https://doi.org/10.3390/en14020371

Chen, Y.-C., Chen, L.-Y. (2021). Pelleting spent coffee grounds by waste utensils as binders of biofuels. J. Environ. Chem. Eng., 9(3), 105006. https://doi.org/10.1016/j.jece.2020.105006

Ivashchuk, O. S., Atamanyuk, V. M., Gnativ, Z. Ya., Chyzhovych, R. A., Zherebetskyi, R. R. (2021). Research into kinetics of filtration drying of alcohol distillery stillage. Vopr. Khim. Khim. Tekhnol., 4, 58–65.

https://doi.org/10.32434/0321-4095-2021-137-4-58-65

Ivashchuk, O. S., Atamanyuk, V. M., Chyzhovych, R. A., Kuzminchuk, T. A., Zherebetskyi, R. R., Kiiaieva, S. S. (2021). Research of the calorific value of dried alcohol distillery stillage. Chem. Technol. Eng., Proc., 4, 58–65.

https://doi.org/10.23939/cte2021.01.200

Wróbel, M., Jewiarz, M., Mudryk, K., Knapczyk, A. (2020). Influence of raw material drying temperature on the Scots pine (pinus sylvestris L.) biomass agglomeration process—a preliminary study. Energies, 13(7), 1809. https://doi.org/10.3390/en13071809

García-Maraver, A., Popov, V., Zamorano, M. (2011). A review of European standards for pellet quality. Renewable Energy, 36(12), 3537–3540. https://doi.org/10.1016/j.renene.2011.05.013

Olugbade, T., Ojo, O., Mohammed, T. (2019). Influence of binders on combustion properties of biomass briquettes: A recent review. BioEnergy Res., 12(2), 241–259. https://doi.org/10.1007/s12155-019-09973-w

Downloads

Published

2023-07-25