BICYCLIC METHYLENE AZIRIDINE IN REACTIONS WITH C- AND N-NUCLEOPHILES

Authors

DOI:

https://doi.org/10.15421/jchemtech.v31i3.278814

Keywords:

azaheterocycles, 1,4-vinylation, vinylmagnesium bromide, aminolysis

Abstract

In recent years, various catalytic synthetic methods, starting with allenes, have been developed to produce a wide range of bicyclic methylene aziridines (MA). MA are valuable intermediates for the preparation of complex amine-containing stereotriads, tetrads, and heterocycles potentially useful in the synthesis of natural products and pharmaceuticals. This work reports the possibilities of using ring opening reactions of MA in the synthesis of biologically relevant heterocyclic motifs such as aziridineurea, 2H-azirine and 4,5-disubstituted oxazolidin-2-one. We performed detailed studies on the reaction between model MA with vinylmagnesium bromide and found that along with formal nucleophilic vinylic substitution product minor fraction of 2-methyl-1-(3-methyl-2H-azirin-2-yl)propyl pent-4-enoate was isolated. We showed that investigated reactions are stereoretentive, ruling out a SNVπ pathway, but the detailed mechanism remains open to speculation. Thus, reactivity patterns shown here for MA reactions can be useful in predicting reaction paths with other C- and N-nucleophiles. 2D NMR spectra of the key products were studied in detail including COSY, NOESY and HSQC experiments.

Author Biography

Vitaliy A. Palchikov, Oles Honchar Dnipro National University

Старший научный сотрудник научно-исследовательской группы кафедры органической химии

References

Gerstner, N. C., Adams, C. S., Tretbar, M., Schomaker, J. M. (2016). Stereocontrolled Syntheses of Seven-Membered Carbocycles by Tandem Allene Aziridination/[4+3] Reaction. Angew. Chem. Int. Ed., 55, 13240. https://doi.org/10.1002/anie.20160619

Burke, E. G., Schomaker, J. M. (2015). Oxidative Allene Amination for the Synthesis of Azetidin-3-ones. Angew. Chem. Int. Ed., 54, 12097. https://doi.org/10.1002/anie.20150472

Adams, C. S., Grigg, R. D., Schomaker, J. M. (2014). Aminosugar motifs via an allene aziridination strategy. Tetrahedron., 70, 4128. https://doi.org/10.1016/j.tet.2014.03.08

Rigoli, J. W., Weatherly, C. D., Vo, B. T., Neale, S., Meis, A. R., Schomaker, J. M. (2013). Chemoselective Allene Aziridination via Ag(I) Catalysis. Org. Lett., 15, 290. https://doi.org/10.1021/ol303167n

Rigoli, J. W., Weatherly, C. D., Alderson, J. M., Vo, B. T., Schomaker, J. M. (2013). Tunable, Chemoselective Amination via Silver Catalysis. J. Am. Chem. Soc., 135, 17238. https://doi.org/10.1021/ja406654y

Boralsky, L. A., Marston, D., Grigg, R. D., Hershberger, J. C., Schomaker, J. M. (2011). Allene Functionalization via Bicyclic Methylene Aziridines. Org. Lett., 13, 1924. https://doi.org/10.1021/ol2002418

Grigg, R. D., Schomaker, J. M., Timokhin, V. (2011). C–H amination/cyclocarbonylation of allene carbamates: a versatile platform for the synthesis of α,β-unsaturated γ-lactams. Tetrahedron., 67, 4318. https://doi.org/10.1016/j.tet.2011.03.02

Robertson, J., Feast, G. C., White, L. V., Steadman, V. A., Claridge, T. D. W. (2010). Structure and reactivity of bicyclic methylene aziridines prepared by intramolecular aziridination of allenes. Org. Biomol. Chem., 8, 3060. https://doi.org/10.1039/C003693E

Feast G. C., Page L. W., Robertson J. (2010). The intramolecular amination of allenes Chem. Commun., 46, 2835. https://doi.org/10.1039/B926179F

Liu, L., Ward, R. M., Schomaker, J. M. (2019). Mechanistic Aspects and Synthetic Applications of Radical Additions to Allenes. Chem. Rev., 119, 12422. https://doi.org/10.1021/acs.chemrev.9b00312

Mumford, P. M., Tarver, G. J., Shipman, M. (2009). Four-Component Reaction for the Preparation of α-Amino Phosphonates from Methyleneaziridines. J. Org. Chem., 74, 3573. https://doi.org/10.1021/jo9004958

Cariou, C. C. A., Clarkson, G. J., Shipman, M. (2008). Rapid Synthesis of 1,3,4,4-Tetrasubstituted β-Lactams from Methyleneaziridines Using a Four-Component Reaction. J. Org. Chem., 73, 9762. https://doi.org/10.1021/jo801664g

Shiers, J. J., Clarkson, G. J., Shipman, M., Hayes, J. F. (2006). Rapid generation of molecular complexity using “hybrid” multi-component reactions (MCRs): application to the synthesis of α-amino nitriles and 1,2-diamines. Chem. Commun., (6), 649. https://doi.org/10.1039/B516192D

Margathe, J.-F., Shipman, M., Smith, S. C. (2005). Solid-Phase, Multicomponent Reactions of Methyleneaziridines: Synthesis of 1,3-Disubstituted Propanones. Org. Lett., 7, 4987. https://doi.org/10.1021/ol051953a

Hayes, J. F., Shipman, M., Twin, H. (2002). Multicomponent Reactions Involving 2-Methyleneaziridines: Rapid Synthesis of 1,3-Disubstituted Propanones. J. Org. Chem., 67, 935. https://doi.org/10.1021/jo016164v

Hayes, J. F., Shipman, M., Twin, H. (2001). Asymmetric synthesis of 2-substituted piperidines using a multi-component coupling reaction: rapid assembly of (S)-coniine from (S)-1-(1-phenylethyl)-2-methyleneaziridine. Chem. Commun., (18), 1784. https://doi.org/10.1039/B106260N

Hayes, J. F., Shipman, M., Twin, H. (2000). Generation of metalloenamines by carbon–carbon bond formation: ring opening reactions of 2-methyleneaziridines with organometallic reagents. Chem. Commun., (18), 1791. https://doi.org/10.1039/B005623P

Prié, G., Prévost, N., Twin, H., Fernandes, S. A., Hayes, J. F., Shipman, M. (2004). A Lewis Acid Catalyzed Intramolecular [4+3] Cycloaddition Route to Polycyclic Systems That Contain a Seven-Membered Ring. Angew. Chem. Int. Ed., 43, 6517. https://doi.org/10.1002/anie.200461084

Quast, H., Vélez, C. A. W. (1974). 2-Lithiated 1-tert-Butyl-3-methyleneaziridine and Its Reaction Products. Angew. Chem. Int. Ed., 13, 342.

Palchykov, V., Dale, P. C., Robertson, J. (2021). Nucleophilic vinylic substitution in bicyclic methyleneaziridines: SNVπ or SNVσ? New J. Chem., 45, 9020. https://doi.org/10.1039/D1NJ01458G

Alper, H., Prickett, J. E. (1977). Metal carbonyl induced reactions of azirines. Coupling and insertion by diiron enneacarbonyl. Inorg. Chem., 16, 67. https://doi.org/10.1021/ic50167a016

Singh, G. S. (2016). Synthetic Aziridines in Medicinal Chemistry: A Mini-Review. Mini Rev. Med. Chem., 16, 892. https://doi.org/10.2174/1389557515666150709122244

Remers, W. A., Dorr, R. T. (2012). Chemistry and Pharmacology of Imexon and Related Cyanoaziridines. Curr. Med. Chem., 19, 5745. https://doi.org/10.2174/092986712803988802

Iyengar, B. S., Dorr, R. T., Alberts, D. S., Hersh, E. M., Salmon, S. E., Remers, W. A. (1999). Novel Antitumor 2-Cyanoaziridine-1-carboxamides. J. Med. Chem., 42, 510. https://doi.org/10.1021/jm980600x

Wells, G. M., Dudding, T., Belding, L., Frick, J. A., Nayek, A., Huang, J., Katz, S. J., Bergmeier, S. C. (2012). Studies on the ring opening reactions of 3-oxa-1-azabicyclo[3.1.0]hexan-2-ones. Synthesis of aminomethyl oxazolidinones and aziridinyl ureas. Tetrahedron., 68, 3980. https://doi.org/10.1016/j.tet.2012.03.071

Anupam, R., Nayek, A., Green, N. J., Grundy, F. J., Henkin, T. M., Means, J. A., Bergmeier, S. C., Hines, J. V. (2008). 4,5-Disubstituted oxazolidinones: High affinity molecular effectors of RNA function. Bioorg. Med. Chem. Lett., 18, 3541. https://doi.org/10.1016/j.bmcl.2008.05.015

Adams, C. S., Boralsky, L. A., Guzei, I. A., Schomaker, J. M. (2012). Modular Functionalization of Allenes to Aminated Stereotriads. J. Am. Chem. Soc., 134, 10807. https://doi.org/10.1021/ja304859w

Kas'yan, L. I., Pal'chikov, V. A., Bondarenko, Y. S. (2011). Azacycloalkanes from epoxides and aziridines. Russ. J. Org. Chem., 47, 1609. https://doi.org/10.1134/S1070428011110017

Downloads

Published

2023-10-28