ISOLATION AND CHARACTERIZATION OF PANCREATIC LIPASE INHIBITOR FROM RAPESEED SEEDS
DOI:
https://doi.org/10.15421/jchemtech.v31i2.279214Keywords:
biotechnologie; pharmacology; pancreatic lipase inhibitor; rapeseed seeds; phenolic compounds; inhibitory activity; extraction and purification; composition and physico-chemical properties; pH-stability; temperature stableAbstract
Digestive enzymes and inhibitors of digestive enzymes are effective correctors of digestive processes in the body, the violation of which leads to various diseases (diabetes, hyperlipidemia, cardiovascular diseases, neoplasms and others). The present study identified the most promising plant objects characterized by the highest antilipolytic activity (ALA) in relation to pancreatic lipase. The experimental results indicate that the inhibitory activity (IA) of phenolic compounds of rapeseed is so much high and comparable to ALA "Orlistat", reaching 95.5 % of its activity. This determines the potential possibility of using the phenolic complex of rapeseed as an alternative to anti-lipolytic drugs of synthetic origin. The predominant component of the phenolic complex is low molecular weight phenolic compounds; polyphenolic compounds are almost equally represented by tannins – condensed and hydrolyzable. According to TLC data, the main components of low molecular weight phenols are glucopyranosylsinapate, sinapic acid and sinapin. Among the phenolic compounds of rapeseed seeds, sinapine and hydrolyzable tannins have the highest anti lipolytic activity against lipase. Significant ability to inhibit the action of pancreatic lipase is characterized by both low molecular weight and high molecular weight phenolic compounds of rapeseed.
References
Reshta S.P., Pylypenko L.M., Danilova O.I. (2021). Physiological aspects of food quality assessment, Kherson: OLDI-PLUS.
Cairns, E. (2005). Obesity: the fat lady sings? Drug Discov. Today, 10, 305–307. doi: 10.1016/S1359-6446(05)03375-1
Arbeeny, C.M. (2004). Addressing the unmet medical need for safe and effective weight loss therapies. Obes. Res. 12, 1191–1196 doi: 10.1038/oby.2004.150
Harrold, J., Williams G., Wong S. (2003). Neuroendocrine targets for the treatment of obesity: physiological roles and unrealized opportunities. Curr. Med. Chem. Central Nerv. Syst. Agents 3, 141–155. doi: 10.2174/1568015033477785
Foster-Schubert, K.E. and Cummings, D.E. (2006). Emerging therapeutic strategies for obesity. Endocr. Rev. 27, 779–793. doi: 10.1210/er.2006-0041
Halford, J., Cooper G., Dovey T., Ishii Y., Rodgers J., Blundell J. (2003) The psychopharmacology of appetite: targets for potential anti-obesity agents. Curr. Med. Chem. Central Nerv. Syst. Agents 3, 283–310. doi: 10.2174/1568015033477695
Cooke, D. and Bloom, S. (2006). The obesity pipeline: current strategies in the development of anti-obesity drugs. Nat. Rev. Drug Discov. 5, 919–931 doi: 10.1038/nrd2136
Ding Y., Wang L., Im S., Hwang O., Kim H.S., Kang M.C., Lee S.H. (2019). Anti-Obesity Effect of Diphlorethohydroxycarmalol Isolated from Brown Alga Ishige okamurae in High-Fat Diet-Induced Obese Mice. Mar. Drugs , 17(11), 637. doi: 10.3390/md17110637.
Moon J., Kim O.Y., Jo, G., Shin, M.J. (2017). Alterations in Circulating Amino Acid Metabolite Ratio Associated with Arginase Activity Are Potential Indicators of Metabolic Syndrome: The Korean Genome and Epidemiology Study. Nutrients, 9(7), 740. doi: 10.3390/nu9070740.
Hofbauer, K.G. (2002). Molecular pathways to obesity. Int. J. Obes. 26, 18–27.
Das, S. K., Chakrabarti, R. (2006). Antiobesity therapy: emerging drugs and targets. Curr. Med. Chem. 13, 1429–1460 doi: 10.2174/092986706776872880
Melnikova, I. and Wages, D. (2006). Antiobesity therapies. Nat. Rev. Drug Discov. 5, 369–370 doi: 10.1038/nrd2037
Shi, Y., Burn, P. (2004). Lipid metabolic enzymes: Emerging drug targets for the treatment of obesity. Nat. Rev. Drug Discov. 3, 695–710. doi: 10.1038/nrd1469
Mancini, M.C., Halpern, A. (2006). Investigational therapies in the treatment of obesity. Expert Opin. Investig. Drugs 15, 897–915. doi: 10.1517/13543784.15.8.897
Marcini, M.C., Halpern, A. (2006). Pharmacological treatment of obesity. Arq. Bras. Endocrinol. Metab., 50, 377–389 https://doi.org/10.1590/S0004-27302006000200024
Szewczyk, J.R., Sternbach, D.D. (2005). Combating obesity by targeting nuclear receptors. Curr. Med. Chem. – Immun., Endoc. & Metab. Agents, 5, 73–84. doi: 10.2174/1568013053005427
Nisoli, E., Carruba, M.O. (2004). Emerging aspects of pharmacotherapy for obesity and metabolic syndrome. Pharmacol. Res., 50, 453–469. doi: 10.1016/j.phrs.2004.02.004
Srivastava, R.K., Srivastava, N. (2004). Search for obesity drugs: Targeting central and peripheral pathways. Curr. Med. Chem. – Immun., Endoc. & Metab. Agents, 4, 75–90 doi: 10.2174/1568013043357806
Weigle, D.S. (2003). Pharmacological therapy of obesity: Past, present, and future. J. Clin. Endocrinol. Metab. 88, 2462–2469. https://doi.org/10.1210/jc.2003-030151
Halpern, A., Mancini, M.C. (2003). Treatment of obesity: an update on antiobesity medications. Obes. Rev., 4, 25–42 doi: 10.1046/j.1467-789x.2003.00083.x
Ramesh S., Abraham R.A., Sarna A., Sachdev H.S., Porwal A., Khan N., Acharya R., Agrawal P.K., Ashraf S. (2022). Prevalence of metabolic syndrome among adolescents in India: a population-based study. BMC Endocr Disord., 22(1), 258. doi: 10.1186/s12902-022-01163-8.
Hauner, H. (2001) Current pharmacological approaches to the treatment of obesity. Int. J. Obes. 25, 102–106. doi: 10.1038/sj.ijo.0801711
Davidowa H., Li Y., Plagemann A. (2003). Altered responses to orexigenic (AGRP, MCH) and anorexigenic (alpha-MSH, CART) neuropeptides of paraventricular hypothalamic neurons in early postnatally overfed rats. Eur J Neurosci., 18(3), 13–21. doi: 10.1046/j.1460-9568.2003.02789.x
Bhutani, K.K., Birari R., Kapat K. (2007). Potential antiobesity and lipid lowering natural products: a review. Nat. Product Commun., 2, 331–348.
doi:10.1177/1934578X0700200316
Srivastava, R.K., Srivastava, N. (2004) Search for obesity drugs: Targeting central and peripheral pathways. Curr. Med. Chem. – Immun., Endoc. & Metab. Agents 4, 75–90 doi: 10.2174/1568013043357806
Weigle, D.S. (2003) Pharmacological therapy of obesity: Past, present, and future. J. Clin. Endocrinol. Metab. 88, 2462–2469. https://doi.org/10.1210/jc.2003-030151
Mukherjee, M. (2003) Human digestive and metabolic lipases—a brief review. J. Mol. Catal., B Enzym. 22, 369–376. doi:10.1016/S1381-1177(03)00052-3
Ali-Shtayeh M.S., Abu-Zaitoun S.Y., Dudai N., Jamous R.M. (2020). Downy Lavender Oil: A Promising Source of Antimicrobial, Antiobesity, and Anti-Alzheimer's Disease Agents. Evid Based Complement Alternat Med. 5679408. doi: 10.1155/2020/5679408.
Heck A.M., Yanovski J.A., Calis K.A. (2000) Orlistat, a new lipase inhibitor for the management of obesity, Pharmacotherapy 20, 270–279. https://doi.org/10.1592/phco.20.4.270.34882
Liu T.-T., Liu X.-T., Chen Q.-X., Shi Y. (2020) Lipase inhibitors for obesity: a review, Biomed. Pharmacother. 128, 110314. https://doi.org/10.1016/j.biopha.2020.110314
Seyedan A., Alshawsh M.A., Alshagga M.A., Koosha S., Zahurin M (2015) Medicinal plants and their inhibitory activities against pancreatic lipase: a review, Alternat. Med., 973143
https://doi.org/10.1155/2015/973143
Singh G., Suresh S., V.K. Bayineni, R.K. Kadeppagari (2015) Lipase inhibitors from plants and their medical applications, Int J Pharm Pharm Sci 7 (Supple 1) 1–5., 4177.
Birari R.B., Bhutani K.K. (2007) Pancreatic lipase inhibitors from natural sources: unexplored potential, Drug Discov. Today 12 879–889. http://dx.doi.org/10.1016/j.drudis.2007.07.024
Garza A.L., Milagro F.I., Boque N., Campion J., Martínez J.A. (2011) Natural inhibitors of pancreatic lipase as new players in obesity treatment, Planta Med. 77, 773–785. doi: 10.1055/s-0030-1270924
Buchholz T., Melzig M.F. (2015) Polyphenolic compounds as pancreatic lipase inhibitors, Planta Med. 81, 771–783. doi: 10.1055/s-0035-1546173
Lunagariya N.A., Patel N.K., Jagtap S.C., Bhutani K.K. (2014) Inhibitors of pancreatic lipase: state of the art and clinical perspectives, EXCLI J. 13, 897–921.
Almasri I.M. (2020) Computational approaches for the discovery of natural pancreatic lipase inhibitors as antiobesity agents, Future Med. Chem. 12, 741–757. doi: 10.4155/fmc-2019-0284
Weibel E.K., Hadvary P., Hochuli E., Kupfer E., Lengsfeld H. (1987) Lipstatin, an inhibitor of pancreatic lipase, produced by Streptomyces toxytricini. I. Producing organism, fermentation, isolation and biological activity, J. Antibiot. (Tokyo) 40, 1081–1085.
Híreš M., Rapavá N., Šimkovič M., Varečka Ľ., Berkeš D., Kryštofová S. (2018). Development and Optimization of a High-Throughput Screening Assay for Rapid Evaluation of Lipstatin Production by Streptomyces Strains. Curr Microbiol., 75(5), 580–587. doi: 10.1007/s00284-017-1420-x
Kim S., Lim S.D. Separation and Purification of Lipase Inhibitory Peptide from Fermented Milk by Lactobacillus plantarum Q180. Food Sci Anim Resour., 40(1), 87–95. doi: 10.5851/kosfa.2019.e87
Kamlesh K., Birari R., Kausik R. (2007) Potential antiobesity and lipid lowering natural products: a review. Nat. Product Commun. 2, 331–348. doi:10.1177/1934578X0700200316
Clapham, J.C., Arch, J.R.S., Tadayyon, M., (2001). Anti-obesity drugs: a critical review of current therapies and future opportunities. Pharmacol. Ther. 89(1), 81–121. doi: 10.1016/s0163-7258(00)00105-4
Kaila, B., Raman, M. (2008). Obesity: a review of pathogenesis and management strategies. Can. J. Gastroenterol. 22(1), 61–68. doi: 10.1155/2008/609039
Yun, J.W., 2010. Possible anti-obesity therapeutics from nature – a review. Phytochemistry 71(14-15), 1625–1641. doi: 10.1016/j.phytochem.2010.07.011
Zeng, S.L., Li, S.Z., Lai, C.J., Wei, M.Y., Chen, B.Z., Li, P., Zheng, G.D., Liu, E.H., (2018). Evaluation of anti-lipase activity and bioactive flavonoids in the Citri Reticulatae Pericarpium from different harvest time. Phytomedicine, 43, 103–109. doi: 10.1016/j.phymed.2018.04.008
Gondoin, A., Grussu, D., Stewart, D., McDougall, G. J. (2010). White and green tea polyphenols inhibit pancreatic lipase in vitro. Food Research International, 43(5), 1537–1544.
https://doi.org/10.1016/j.foodres.2010.04.029
Rahim, A.T.M.A., Takahashi, Y., Yamaki, K. (2015). Mode of pancreatic lipase inhibition activity in vitro by some flavonoids and non-flavonoid polyphenols. Food Res. Int., 75, 289–294. doi: 10.1016/j.foodres.2015.05.017
Belfeki, H., Mejri, M., Hassouna, M. (2016). Antioxidant and anti-lipases activities in vitro of Mentha viridis and Eucalyptus globulus extracts. Ind. Crops Prod. 89, 514–521. doi:10.1016/j.indcrop.2016.06.002
Jeong, J.Y., Jo, Y.H., Kim, S.B., Liu, Q., Lee, J.W., Mo, E.J., Lee, K.Y., Hwang, B.Y., Lee, M.K. (2015). Pancreatic lipase inhibitory constituents from Morus alba leaves and optimization for extraction conditions. Bioorg. Med. Chem. Lett. 25(11), 2269–2274. doi: 10.1016/j.bmcl.2015.04.045
Dechakhamphu, A., Wongchum, N. (2015). Screening for anti-pancreatic lipase properties of 28 traditional Thai medicinal herbs. Asian Pac. J. Trop. Biomed. 5(12), 1042–1045. https://doi.org/10.1016/j.apjtb.2015.09.012
Slanc, P., Doljak, B., Kreft, S., Lunder, M., Janes, D., Strukelj, B. (2009). Screening of selected food and medicinal plant extracts for pancreatic lipase inhibition. Phytother. Res. 23(6), 874–877. doi: 10.1002/ptr.2718
Wikiera A., Mika M., Zyla K., (2012) Methylxanthine drugs are human pancreatic lipase inhibitors, Pol. J. Food Nutr. Sci., 62 109–113. https://doi.org/10.2478/v10222-011-0043-3
Matsumoto M., Hosokawa M., Matsukawa N., Hagio M., Shinoki A., Nishimukai M. (2010) Suppressive effects of the marine carotenoids, fucoxanthin and fucoxanthinol on triglyceride absorption in lymph duct cannulated rats, Eur. J. Nutr. 49 243–249. doi: 10.1007/s00394-009-0078-y
Habtemariam S. (2013) Antihyperlipidemic components of Cassia auriculata aerial parts: identification through in vitro studies, Phytother. Res. 27, 152–155. doi: 10.1002/ptr.4711
Han L, Li W., Narimatsu S, Liu L., Fu H., Okuda H, (2007) Inhibitory effects of compounds isolated from fruit of Juglans mandshurica on pancreatic lipase, J. Nat. Med. 61, 184–186. doi:10.1007/s11418-006-0109-4
Lee E.M., Lee S.S., Chung B.Y., Cho J.Y., Lee I.C., Ahn S.R. (2010) Pancreatic lipase inhibition by C-glycosidic flavones isolated from Eremochloa ophiuroides, Mol 15, 8251–8259. doi: 10.3390/molecules15118251
Birari R.B., Gupta S, Mohan C.G., Bhutani K.K. (2011) Antiobesity and lipid lowering effects of Glycyrrhiza chalcones: experimental and computational studies, Phytomedicine 18, 795–801. doi: 10.1016/j.phymed.2011.01.002
Kumar S., Alagawadi K.R. (2013) Anti-obesity effects of galangin, a pancreatic lipase inhibitor in cafeteria diet fed female rats, Pharm. Biol. 51 607–613. doi: 10.3109/13880209.2012.757327
Kawaguchi K., Mizuno T., Aida K., Uchino K. (1997) Hesperidin as an inhibitor of lipases from porcine pancreas and Pseudomonas, Biosci. Biotechnol. Biochem. 61, 102–104. doi: 10.1271/bbb.61.102
Kato E., Yama M., Nakagomi R., Shibata T., Hosokawa K., Kawabata J. (2012) Substrate like water soluble lipase inhibitors from Filipendula kamtschatica, Bioorg. Med. Chem. Lett. 22 6410–6412. doi: 10.1016/j.bmcl.2012.08.055
Yamamoto M., Shimura S., Itoh Y., Ohsaka T., Egawa M., Inoue S. (2000) Anti-obesity effects of lipase inhibitor CT-II, an extract from edible herbs, Nomame herba, on rats fed a high-fat diet, Int. J. Obes. Relat. Metab. Disord. 24 758–764. doi: 10.1038/sj.ijo.0801222
Eom S.H., Lee M.S., Lee E.W., Kim Y.M., Kim T.H. (2013). Pancreatic lipase inhibitory activity of phlorotannins isolated from Eisenia bicyclis, Phytother. Res. 27 148–151. doi: 10.1002/ptr.4694
Moreno D.A., Ilic N., Poulev A., Raskin I. (2006). Effects of Arachis hypogaea nutshell extract on lipid metabolic enzymes and obesity parameters, Life Sci. 78 2797–2803. doi: 10.1016/j.lfs.2005.11.012
Alshehri M.M., Quispe C., Herrera-Bravo J., Sharifi-Rad J., Tutuncu S., Aydar E.F., Topkaya C., Mertdinc Z., Ozcelik B., Aital M., Kumar N.V.A., Lapava N., Rajkovic J., Ertani A., Nicola S., Semwal P., Painuli S., González-Contreras C., Martorell M., Butnariu M., Bagiu I.C., Bagiu R.V., Barbhai M.D., Kumar M., Daştan S.D., Calina D., Cho W.C. (2022). A Review of Recent Studies on the Antioxidant and Anti-Infectious Properties of Senna Plants. Oxid Med Cell Longev. 6025900. doi: 10.1155/2022/6025900.
Zheng Q., Li W., Han L., Koike K (2007). Pancreatic lipase-inhibiting triterpenoid saponins from Gypsophila oldhamiana. Chem Pharm Bull (Tokyo), 55(4), 646–650. doi: 10.1248/cpb.55.646
Nakai, M., Fukui Y., S., Toyoda-Ono Y., Iwashita T., Shibata H., Mitsunaga T., Hashimoto F., Kiso Y. (2005). Inhibitory effects of oolong tea polyphenols on pancreatic lipase in vitro. J. Agric. Food Chem., 53, 4593–4598. https://doi.org/10.1021/jf047814+
Shin J.E., Han M.J., Kim D.H. (2003). 3-Methylethergalangin isolated from Alpinia officinarum inhibits pancreatic lipase, Biol. Pharm. Bull. 26 854–857. doi: 10.1248/bpb.26.854
Yoshikawa M., Shimoda H., Nishida N., Takada M., Matsuda H. (2002). Salacia reticulata and its polyphenolic constituents with lipase inhibitory and lipolytic activities have mild antiobesity effects in rats, J. Nutr. 132, 1819–1824. doi: 10.1093/jn/132.7.1819
Yoshizumi K., Hirano K., Ando H., Hirai Y., Ida Y., Tsuji T. (2006). Lupane type saponins from leaves of Acanthopanax sessiliflorus and their inhibitory activity on pancreatic lipase, J. Agric. Food Chem. 54 335–341. doi: 10.1021/jf052047f
Li F., Li W., Fu H., Zhang Q., Koike K. (2007). Pancreatic lipase-inhibiting triterpenoid saponins from fruits of Acanthopanax senticosus, Chem. Pharm. Bull. (Tokyo) 55, 1087–1089. doi: 10.1248/cpb.55.1087
Han L.K., Xu B.J., Kimura Y., Zheng Y., Okuda H. (2000). Platycodin radix affects lipid metabolism in mice with high fat diet-induced obesity, J. Nutr. 130, 2760–2764. doi: 10.1093/jn/130.11.2760
Han L.K., Zheng Y.N., Yoshikawa M., Okuda H., Kimura Y. (2005). Anti-obesity effects of chikusetsusaponins isolated from Panax japonicus rhizomes, BMC Complement. Altern. Med. 5, 09–18. doi: 10.1186/1472-6882-5-9
Liu W., Zheng Y., Han L., Wang H., Saito M., Ling M. (2008). Saponins (Ginsenosides) from stems and leaves of Panax quinquefolium prevented high-fat diet-induced obesity in mice, Phytomedicine 15, 1140–1145. doi: 10.1016/j.phymed.2008.07.002
Kimura H., Ogawa S., Jisaka M., Kimura Y., Katsube T., Yokota K. (2006). Identification of novel saponins from edible seeds of Japanese horse chestnut (Aesculus turbinate Blume) after treatment with wooden ashes and their nutraceutical activity, J. Pharm. Biomed. Anal. 41, 1657–1665. doi: 10.1016/j.jpba.2006.02.031
Zheng Q., Koike K., Han L.K., Okuda H., Nikaido T. (2004). New biologically active triterpenoid saponins from Scabiosa tschiliensis, J. Nat. Prod. 67, 604–613. doi: 10.1021/np0304722
Yoshikawa M., Sugimoto S., Kato Y., Nakamura S., Wang T., Yamashita C. (2009). Acylated oleanane-type triterpene saponins with acceleration of gastrointestinal transit and inhibitory effect on pancreatic lipase from flower buds of Chinese tea plant (Camellia sinensis), Chem. Biodivers. 6, 903–915. doi: 10.1002/cbdv.200800153
Kwon C.S., Sohn H.Y., Kim S.H., Kim J.H., Son K.H., Lee J.S. (2003). Anti-obesity effect of Dioscorea nipponicamakino with lipase-inhibitory activity in rodents, Biosci. Biotechnol. Biochem. 67, 1451–1456. doi: 10.1271/bbb.67.1451
Sugimoto S., Nakamura S., Yamamoto S., Yamashita C., Oda Y., Matsuda H. (2009). Structures of triterpene oligoglycosides and lipase inhibitors from mate, leaves of Ilex paraguariensis, Chem. Pharm. Bull 57, 257–261. doi: 10.1248/cpb.57.257
Zheng Q., Li W., Han L., Koike K., (2007). Pancreatic lipase inhibiting triterpenoid saponins from Gypsophila oldhamiana, Chem. Pharm. Bull., 55, 646–650. doi: 10.1248/cpb.55.646
Lee A., Lee J.H., Baek N.I., Kim D.H. (2005). Antihyperlipidemic effect of crocin isolated from the fructus of Gardenia jasminoides and its metabolite crocetin, Biol. Pharm. Bull. 28, 2106–2110. doi: 10.1248/bpb.28.2106
Jang D.S., Lee G.Y., Kim J., Lee Y.M., Kim J.M., Kim Y.S. (2008). A new pancreatic lipase inhibitor isolated from the roots of Actinidia arguta, Arch. Pharm. Res. 31, 666–670. doi: 10.1007/s12272-001-1210-9
Ninomiya, K., Matsuda, H., Shimoda, H., Nishida, N., Kasajima, N., Yoshino, T. (2004). Carnosic acid, a new class of lipid absorption inhibitor from sage, Bioorg. Med. Chem. Lett. 14, 1943–1946. doi: 10.1016/j.bmcl.2004.01.091
Yoshizumi K., Hirano K, Ando H., Hirai Y., Yoshiteru Ida Y., Tsuj T., Satouchi K., Terao J. (2006). Lupane type saponins from leaves of Acanthopanax sessiliflorus and their inhibitory activity on pancreatic lipase. J. Agric. Food Chem. 54, 335–341. doi: 10.1021/jf052047f
Masayuki Y., Shimoda H., Nishida N., Takada M., Matsuda H. (2002). Salacia reticulata and its polyphenolic constituents with lipase inhibitory and lypophilic activities have mild antiobesity effects in rats. J. Nutr. 132, 1819–1834 doi: 10.1093/jn/132.7.1819.
Yamamota M., Shimura S, Itoh Y., Ohsaka T., Egawa M., Inoue S. (2000). Anti-obesity effects of lipase inhibitor CT-II, an extract from edible herbs, Nomame Herba, on rats fed a high-fat diet. Int. J. Obes. 24, 758– 764 doi: 10.1038/sj.ijo.0801222.
Shin, J.E., Han M.J., Kim D.H. (2002). 3-Methylethergalangin isolated from Alpinia officinarum inhibits pancreatic lipase. Biol. Pharm. Bull. 25, 1442–1445 doi: 10.1248/bpb.26.854
Moreno, D.A. et al. (2003) Inhibitory effects of grape seed extract on lipases. Nutrition 19, 876–879. doi: 10.1016/s0899-9007(03)00167-9
Cherno N. K., Krusir G.V., Kovalenko O.V. (2010) Digestors of digestive processes. Kherson: OLDI-PLUS.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Oles Honchar Dnipro National University
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).