INVESTIGATION OF ESSENTIAL OILS COMPONENTS AS POTENTIAL DISINFECTANTS INHIBITORS OF SARS–COV–2 SPIKE GLYCOPROTEIN

Authors

  • Olga O. Ovchynnykova Ukrainian State University of Chemical Technology, Dnipro, Ukraine, Ukraine
  • Kostyantyn M. Sukhyy Ukrainian State University of Chemical Technology, Dnipro, Ukraine, Ukraine https://orcid.org/0000-0002-4585-8268

DOI:

https://doi.org/10.15421/jchemtech.v32i1.283321

Keywords:

COVID-19, SARS-CoV-2; homology modeling; molecular docking; natural compounds; disinfectants

Abstract

SARS-CoV-2, deadly virus first reported in 2019 rapidly spread around the globe causing COVID-19. To control the proliferation of the vires governments took measures such as disinfections of public places, mask mandates and social distancing. As a result of a mass disinfection of public places, large amounts of various disinfectants were continuously released into the waste waters causing significant impact on the environment. This large-scale pollution of ground waters, and a possible environmental crisis, led the scientific community towards developing alternative, eco-friendly, and biodegradable products for disinfection. Due to the relatively large mutation rate of SARS-CoV-2 virus, it became crucial to become proactive with the utilization of research approaches, hence, the theoretical investigation appeared to be the best course of action. Thus, in this work, we combined two aims: first, creating the benchmark for building efficient homology models of spike glycoproteins receptor-binding domain from different SARS-CoV-2 variants; and the second aim, being a practical application, scanning a database of natural compounds as potential disinfectant products.

References

Cascella, M.; Rajnik, M.; Aleem, A.; Dulebohn, S.; di Napoli, R. (2022). Features, Evaluation, and Treatment of Coronavirus (COVID-19). StatPearls: Treasure Island, FL, USA.

Gao, J.; Tian, Z.; Yang, X. (2020) Breakthrough: Chloroquine Phosphate Has Shown Apparent Efficacy in Treatment of COVID-19 Associated Pneumonia in Clinical Studies. BioScience Trends, 14 (1), 72–73. https://doi.org/10.5582/bst.2020.01047

Gottlieb, R. L.; Vaca, C. E.; Paredes, R.; Mera, J.; Webb, B.J.; Perez, G.; Oguchi, G.; Ryan, P.; Nielsen, B. U.; Brown, M.; Hidalgo, A.; Sachdeva, Y.; Mittal, S.; Osiyemi, O.; Skarbinski, J.; Juneja, K.; Hyland, R. H.; Osinusi, A.; Chen, S.; Camus, G.; Abdelghany, M.; Davies, S.; Behenna-Renton, N.; Duff, F.; Marty, F. M.; Katz, M. J.; Ginde, A. A.; Brown, S. M.; Schiffer, J. T.; Hill, J. A. (2022). Early Remdesivir to Prevent Progression to Severe Covid-19 in Outpatients. New England Journal of Medicine, 386 (4), 305–315. https://doi.org/10.1056/NEJMoa2116846

Coronavirus (COVID-19) Update: FDA Authorizes First Oral Antiviral for Treatment of COVID-19 https://www.fda.gov/news-events/press-announcements/coronavirus-COVID-19-update-fda-authorizes-first-oral-antiviral-treatment-COVID-19

Kyriakidis, N. C.; López-Cortés, A.; González, E. V.; Grimaldos, A. B.; Prado, E. O. (2021). SARS-CoV-2 Vaccines Strategies: A Comprehensive Review of Phase 3 Candidates. npj Vaccines, 6(1), 28. https://doi.org/10.1038/s41541-021-00292-w

Finsterer, J. (2022). Neurological Side Effects of SARS‐CoV‐2 Vaccinations. Acta Neurologica Scandinavica, 145(1), 5–9. https://doi.org/10.1111/ane.13550

Ishay, Y.; Kenig, A.; Tsemach-Toren, T.; Amer, R.; Rubin, L.; Hershkovitz, Y.; Kharouf, F. (2021). Autoimmune Phenomena Following SARS-CoV-2 Vaccination. International Immunopharmacology, 99, 107970. https://doi.org/10.1016/j.intimp.2021.107970

Nasreen, S.; He, S.; Chung, H.; Brown, K. A.; Gubbay, J. B.; Buchan, S. A.; Wilson, S. E.; Sundaram, M. E.; Fell, D. B.; Chen, B. (2021). Effectiveness of COVID-19 Vaccines against Variants of Concern, Canada. Medrxiv.

Baraniuk, C. (2021). Covid-19: How Effective Are Vaccines against the Delta Variant? BMJ, 374, n1960. https://doi.org/10.1136/bmj.n1960

Subpiramaniyam, S. (2021). Outdoor Disinfectant Sprays for the Prevention of COVID-19: Are They Safe for the Environment? Science of the Total Environment, 759, 144289.

Sharafi, S. M.; Ebrahimpour, K.; Nafez, A. (2021) Environmental Disinfection against COVID-19 in Different Areas of Health Care Facilities: A Review. Reviews on environmental health, 36 (2), 193–198.

Wang, J.; Yang, W.; Pan, L.; Ji, J. S.; Shen, J.; Zhao, K.; Ying, B.; Wang, X.; Zhang, L.; Wang, L. (2020). Prevention and Control of COVID-19 in Nursing Homes, Orphanages, and Prisons. Environmental Pollution, 266, 115161.

Bhat, S. A.; Sher, F.; Kumar, R.; Karahmet, E.; Haq, S. A. U.; Zafar, A.; Lima, E. C. (2021). Environmental and Health Impacts of Spraying COVID-19 Disinfectants with Associated Challenges. Environmental Science and Pollution Research, 1–10.

Daverey, A.; Dutta, K. (2021). COVID-19: Eco-Friendly Hand Hygiene for Human and Environmental Safety. Journal of Environmental Chemical Engineering, 9 (2), 104754. https://doi.org/10.1016/j.jece.2020.104754

Panyod, S.; Ho, C.-T.; Sheen, L.-Y. (2020). Dietary Therapy and Herbal Medicine for COVID-19 Prevention: A Review and Perspective. Journal of Traditional and Complementary Medicine, 10(4), 420–427. https://doi.org/10.1016/j.jtcme.2020.05.004

Walls, A.C., Park Y.-J., Tortorici, M.A., Wall, A., McGuire, A.T., Veesler, D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell;181:281–92.

Perlman, S.; Netland, J. (2009). Coronaviruses Post-SARS: Update on Replication and Pathogenesis. Nature reviews microbiology, 7(6), 439–450.

Li, F. (2016). Structure, Function, and Evolution of Coronavirus Spike Proteins. Annual review of virology, 3, 237–261.

Ling, C. (2020). Traditional Chinese Medicine Is a Resource for Drug Discovery against 2019 Novel Coronavirus (SARS-CoV-2). Journal of Integrative Medicine, 18(2), 87–88. https://doi.org/10.1016/j.joim.2020.02.004

Yang, Y.; Islam, M. S.; Wang, J.; Li, Y.; Chen, X. (2020). Traditional Chinese Medicine in the Treatment of Patients Infected with 2019-New Coronavirus (SARS-CoV-2): A Review and Perspective. International Journal of Biological Sciences, 16 (10), 1708–1717. https://doi.org/10.7150/ijbs.45538

An, X.; Zhang, Y.; Duan, L.; Jin, D.; Zhao, S.; Zhou, R.; Duan, Y.; Lian, F.; Tong, X., (2021). The direct evidence and mechanism of traditional Chinese medicine treatment of COVID-19. Biomed. Pharmacother. 137, 111267. https://doi.org/10.1016/j.biopha.2021.111267

Shadrack, D. M.; Deogratias, G.; Kiruri, L. W.; Swai, H. S.; Vianney, J.-M.; Nyandoro, S. S. (2021). Ensemble-Based Screening of Natural Products and FDA-Approved Drugs Identified Potent Inhibitors of SARS-CoV-2 That Work with Two Distinct Mechanisms. Journal of Molecular Graphics and Modelling, 105, 107871. https://doi.org/10.1016/j.jmgm.2021.107871

Terstappen, G.; Reggiani, C. A. (2001). In Silico Research in Drug Discovery. Trends in Pharmacological Sciences, 22 (1), 23–26. https://doi.org/10.1016/S0165-6147(00)01584-4

Ekins, S.; Mestres, J.; Testa, B. (2007). In Silico Pharmacology for Drug Discovery: Methods for Virtual Ligand Screening and Profiling. British Journal of Pharmacology, 152 (1), 9–20. https://doi.org/10.1038/sj.bjp.0707305

Kapusta, K.; Kar, S.; Collins, J. T.; Franklin, L. M.; Kolodziejczyk, W.; Leszczynski, J.; Hill, G. A. (2020). Protein Reliability Analysis and Virtual Screening of Natural Inhibitors for SARS-CoV-2 Main Protease (Mpro) through Docking, Molecular Mechanic & Dynamic, and ADMET Profiling. Journal of Biomolecular Structure and Dynamics, 1–18.

Ali, A.; Vijayan, R. (2020). Dynamics of the ACE2–SARS-CoV-2/SARS-CoV Spike Protein Interface Reveal Unique Mechanisms. Scientific Reports, 10 (1), 14214. https://doi.org/10.1038/s41598-020-71188-3

Schrödinger Release 2020-3 (2021). Schrödinger LLC: New York, NY, USA.

Sastry, G. M.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. (2013). Protein and Ligand Preparation: Parameters, Protocols, and Influence on Virtual Screening Enrichments. Journal of computer-aided molecular design, 27(3), 221–234.

Shelley, J. C.; Cholleti, A.; Frye, L. L.; Greenwood, J. R.; Timlin, M. R.; Uchimaya, M. (2007). Epik: A Software Program for PK a Prediction and Protonation State Generation for Drug-like Molecules. Journal of computer-aided molecular design, 21(12), 681–691.

Roos, K.; Wu, C.; Damm, W.; Reboul, M.; Stevenson, J. M.; Lu, C.; Dahlgren, M. K.; Mondal, S.; Chen, W.; Wang, L. (2019). OPLS3e: Extending Force Field Coverage for Drug-like Small Molecules. Journal of chemical theory and computation, 15(3), 1863–1874.

Barton, M.I.; MacGowan, S.A.; Kutuzov, M.A.; Dushek, O.; Barton, G.J.; van der Merwe, P.A. (2021). Effects of Common Mutations in the SARS-CoV-2 Spike RBD and Its Ligand, the Human ACE2 Receptor on Binding Affinity and Kinetics. Elife, 10, e70658.

Thompson, J. D.; Gibson, Toby. J.; Higgins, D. G. (2003). Multiple Sequence Alignment Using ClustalW and ClustalX. Current Protocols in Bioinformatics, 00 (1). https://doi.org/10.1002/0471250953.bi0203s00

National Center for Biotechnology Information https://pubchem.ncbi.nlm.nih.gov/

Friesner, R. A.; Murphy, R. B.; Repasky, M. P.; Frye, L. L.; Greenwood, J. R.; Halgren, T. A.; Sanschagrin, P. C.; Mainz, D. T. (2006). Extra Precision Glide: Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein− Ligand Complexes. Journal of medicinal chemistry, 49(21), 6177–6196.

Bowers, K. J.; Chow, D. E.; Xu, H.; Dror, R. O.; Eastwood, M. P.; Gregersen, B. A.; Klepeis, J. L.; Kolossvary, I.; Moraes, M. A.; Sacerdoti, F. D. (2006). Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters. In SC’06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing.

Published

2024-04-26