THEORETICAL STUDY OF THE PHOSPHATE UNITS STABILITY BY THE DFT B3LYP/6-311G QUANTUM METHOD

Authors

DOI:

https://doi.org/10.15421/jchemtech.v31i3.285545

Keywords:

DFT; electrophilic; electrostatic potential; Global reactivity indices; phosphate units; nucleophilic.

Abstract

The phosphate units have been theoretically investigated through density functional theory (DFT) calculations. Ionization potential (I), electron affinity (A), electrophilicity index (ω), chemical potential (μ), hardness (ŋ), softness (S), and dipole moment (P) have been optimized. The obtained results revealed that the [PO4]3- (Q0) units act as electron donors, while the [P4O10]0 (Q3) unit acts as an electron acceptor. The passage from one unit to the other implies an increase in the number of bridging oxygens (BO) consistent with the variation of Mulliken charges. Moreover, the analysis of the optimized contours of the electrostatic potential has indicated that the electrophilic attack is more expected on the P-O-P bonds. The infrared and Raman spectra have been also predicted and the change of symmetric and asymmetric vibrational bands of the phosphate units with the number of bridging oxygens has been investigated.

References

Chen, Y., Liu, X. Y., Chen, G. H., Yang, T., Yuan, C. L., Zhou, C. R., Xu, J. W. (2017). Up-conversion luminescence and temperature sensing characteristics of Er3+/Yb3+ co-doped phosphate glasses, J. Mater. Sci. Mater. Electron., 28(20), 15657–15662. https://doi.org/10.1007/s10854-017-7454-9

Canioni, L., Bellec, M., Royon, A., Bousquet, B., Cardinal, T. (2008). Three-dimensional optical data storage using third-harmonic generation in silver zinc phosphate glass. Opt. Lett., 33(4), 360–362. https://doi.org/10.1364/OL.33.000360

Das, S.S., Baranwal, B.P., Gupta, C.P., Singh, P. (2003). Characteristics of solid-state batteries with zinc/cadmium halide-doped silver phosphate glasses as electrolytes. J. Power Sources, 114(2), 346–351. https://doi.org/10.1016/S0378-7753(02)00604-3

Juárez-Batalla, J., Meza-Rocha, A. N., Camarillo, I., Caldiño, U. (2016). Luminescence properties of Tb3+-doped zinc phosphate glasses for green laser application. Opt., 58, 406–411. https://doi.org/10.1016/j.optmat.2016.06.022

Zachariasen, W. H. (1932) The atomic arrangement in glass. J. Am. Chem. Soc., 54(10), 3841–3851. https://doi.org/10.1021/ja01349a006

Brow, R. K., (2000) Review: the structure of simple phosphate glasses, J. Non- Cryst. Solids, 263–264, 1–28

Hoppe, U. (1996) A structural model for phosphate glasses, J. Non-Cryst. Solids, 195(12), 138–147. https://doi.org/10.1016/S0022-3093(99)00620-1

Abe, Y., Hayashi, M., Iwamoto, T., Sumi, H., Hench, L. (2005). Superprotonic conducting phosphate glasses containing water, J. Non-Cryst. Solids, 351(2426) 2138–2141. https://doi.org/10.1016/j.jnoncrysol.2005.05.010

Broer, M. M., Bruce, A. J., Grodkiewicz, W. H. (1992). Photoinduced refractive-index changes in several Eu3+-, Pr3+-, and Er3+-doped oxide glasses, Phys. Rev. B, 45(13) 7077–7083. doi: 10.1103/physrevb.45.7077

Lee, C., Yang, W., Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 37(2) 785. https://doi.org/10.1103/PhysRevB.37.785

Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R. (2009). Gaussian 09 revision C, 1. Gaussian Inc, Wallingford C.T.

Stewart, J. J. (1989). Optimization of parameters for semi empirical methods II. Applications. J. Comput. Chem., 10(2), 221–264.

Parr, R. G., Yang, W. (1989). Density-functional Theory of Atoms and Molecules, Oxford University Press, New York, Oxford.

Khan, M. F., Rashid, R. B., Rahman, M. M., Al Faruk, M., Rahman, M. M., Rashid, M. A. (2017). Effects of solvent polarity on solvation free energy, dipole moment, polarizability, hyperpolarizability and molecular reactivity of aspirin. Int. J. Pharm. Pharm. Sci, 9(2), 217–221. doi: 10.22159/ijpps.2017v9i2.15853

Vijayakumar, S., Kolandaivel, P. (2006). Study of static dipole polarizabilities, dipole moments, and chemical hardness for linear CH3–(CC) n–X (X= H, F, Cl, Br, and NO2 and n= 1–4) molecules. J. Mol. Struct. THEOCHEM. 770(1-3), 23–30. https://doi.org/10.1016/j.theochem.2006.04.030

Afzal, Q. Q., Jaffar, K., Ans, M., Rafique, J., Iqbal, J., Shehzad, R. A., Mahr, M. S. (2022). Designing benzothiadiazole based highly efficient non-fullerene acceptor molecules for organic solar cells. Polymer, 238, 124405. https://doi.org/10.1016/j.polymer.2021.124405

Politzer, P.; Murray, J. S. (2004). Molecular Electrostatic Potentials; Taylor & Francis Group, LLC: New York, NY, USA.

Mathammal, R.; Sangeetha, K.; Sangeetha, M.; Mekala, R.; Gadheeja, S. (2016). Molecular structure, vibrational, UV, NMR, HOMOLUMO MEP, NLO, NBO analysis of 3, 5 di tert butyl 4 hydroxy benzoic acid. J. Mol. Struct., 1120, 1–14. https://doi.org/10.1016/j.molstruc.2016.05.008

Boufas, W.; Dupont, N.; Berredjem, M.; Berrezag, K.; Becheker, I.; Berredjem, H.; Aouf, N.-E. (2014). Synthesis and antibacterial activity of sulfonamides. SAR and DFT studies. J. Mol. Struct., 1074, 180–185. https://doi.org/10.1016/j.molstruc.2014.05.066

Ebenso, E. E., Arslan, T., Kandemi̇rlı, F., Love, I., Öğretır, C., Saracoğlu, M., & Umoren, S. A. (2010). Theoretical studies of some sulphonamides as corrosion inhibitors for mild steel in acidic medium. Int. J. Quantum. Chem., 110(14), 2614–2636.

Rezania, J., Behzadi, H., Shockravi, A., Ehsani, M., Akbarzadeh, E. (2018) Synthesis and DFT calculations of some 2-aminothiazoles, J. Mol. Struct, 1157, 300–305.

Pandey, U.; Srivastava, M.; Singh, R.; Yadav, R. (2014). DFT study of conformational and vibrational characteristics of 2-(2-hydroxyphenyl) benzothiazole molecule. Spectrochim. Acta Part A, 129, 61–73. https://doi.org/10.1016/j.molstruc.2017.12.072

Saout, G. L., Fayon, F., Bessada, C., Simon, P., Blion, A., Vaills, Y. (2001) A multispectroscopic study of PbOxZnO0.6−x(P2O5)0.4 glasses, J. Non-Cryst. Solids, 293–295, 657–662.

Brow, R. K. (2000) Review: The structure of simple phosphate glasses, J. Non-Cryst. Solids, 263, 1–28. https://doi.org/10.1016/S0022-3093(99)00620-1

Schwarz, J., Tichá, H., Tichýa, L., Mertens, R. (2004). Physical properties of PbO-ZnO-P2O5 glasses. I. Infrared and Raman spectra, J. Optoelectron. Adv. Mater., 6, 737–746.

Guo, H. W., Wang, X. F., Gong, Y. X. (2010). Mixed alkali effect in xK2O-(30-x)Na2O-30P2O5-40ZnO glasses, J. Non Cryst Solids, 356, 2109–2113. https://doi.org/10.1016/j.jnoncrysol.2010.07.060

Ternane, R., Ferid, M., Guyot, Y. (2008). Spectroscopic properties of Yb3C in NaYbP2O7 diphosphate single crystals. J. Alloys Comp., 464, 327–331

Mandlule, A., Döhler, F., van Wüllen, L., Kasuga, T., Brauer, D. S. (2014). Changes in structure and thermal properties with phosphate content of ternary calcium sodium phosphate glasses. J. Non-Cryst. Solid, 392, 31–38. https://doi.org/10.1016/j.jnoncrysol.2014.04.002

Abid, M., Et-tabirou, M., Hafid M. (2001). Glass forming region, ionic conductivity and infrared spectroscopy of vitreous sodium lead mixed phosphates. Mater. Res. Bull. 36, 407–421.

Betthet, P., Bretey, E., Berthon, J., d'Yvoire, F., Belkebir, A., Rulmont, А., Gilbert, В. (1994). Structure and ion transport properties of Na2O-Ga2O3-P2O5 glasses. Solid State Ion., 70, 476–481. https://doi.org/10.1016/0167-2738(94)90357-3

Downloads

Published

2023-10-28

Issue

Section

Physical and inorganic chemistry