QUANTUM-CHEMICAL UNDERSTANDING OF THE IR ABSORPTION CHARACTERISTICS FOR SOME STRUCTURAL FRAGMENTS OF LIGNIN MACROMOLECULES
DOI:
https://doi.org/10.15421/jchemtech.v31i3.286083Keywords:
ab initio calculation, IR absorption spectrum, harmonic vibrational frequency, relative thermodynamic stability, lignin structureAbstract
Using the ab initio methods of quantum chemistry, a detailed theoretical investigation of oligomeric products, that reproduce some features of the structure for typical fragments of lignin macromolecules have been carried out. The structuring of individual sections has done on the basis of trans-coniferyl alcohol as a prototype with its subsequent dimerization for three pairs of isomeric compounds with different types of linkages. Their ranking according to the level of relative thermodynamic stability showed, that the forms (a-O-4), (b-b) and (5-5) are the most stable, while the structures (b-O-4), (b-5) and (4-O-5) turned out to be the less stable ones. When substantiating of the spectral characteristics for these systems with the calculation of vibrational frequencies in the harmonic approximation, considerable attention was paid to the intramolecular hydrogen bonding effects, which occur with some participation of spatially complicated hydroxyl groups of the alcohol or phenolic type, as well as the analysis of the rigid chain of pinoresinol system, which contains a bicyclic cage fragment. The results of calculations are in good agreement with the IR spectral data obtained experimentally, and may be of fundamental importance from the point of view about searching of potential precursor compounds for further structuring of this irregular biopolymer.
References
Liu, Q., Luo, L., Zheng, L. (2018). Lignins: Biosynthesis and Biological Functions in Plants. Int. J. Mol. Sci., 19(2), 335. doi: 10.3390/ijms19020335
Riaz, M. W., Yousaf, M. I., Hussain, Q., Yasir, M., Sajjad, M., & Shah, L. (2023). Role of Lignin in Wheat Plant for the Enhancement of Resistance against Lodging and Biotic and Abiotic Stresses. Stresses, 3(2), 434–453. doi: 10.3390/stresses3020032
Chen, M., Li, Y., Liu, H., Zhang, D., Shi, Q.-S., Zhong, X.-Q., Guo, Y., Xie, X.-B. (2023). High value valorization of lignin as environmental benign antimicrobial. Mater. Today Bio, 18, 100520. doi: 10.1016/j.mtbio.2022.100520
Novaes, E., Kirst, M., Chiang, V., Winter-Sederoff, H., Sederoff, R. (2010). Lignin and Biomass: A Negative Correlation for Wood Formation and Lignin Content in Trees. Plant Physiol., 154(2), 555–561. doi: 10.1104/pp.110.161281
Frei, M. (2013). Lignin: Characterization of a Multifaceted Crop Component. Sci. World J., 2013, 436517. doi: 10.1155/2013/436517
Filbakk, T., Jirjis, R., Nurmi, J., & Høibø, O. (2011). The effect of bark content on quality parameters of Scots pine (Pinus sylvestris L.) pellets. Biomass Bioenergy, 35(8), 3342–3349. doi: 10.1016/j.biombioe.2010.09.011
Tarasov, D., Leitch, M., Fatehi, P. (2018). Lignin–carbohydrate complexes: properties, applications, analyses, and methods of extraction: a review. Biotechnol. Biofuels, 11, 269. doi: 10.1186/s13068-018-1262-1
N'Guessan, J. L. L., Niamké, B. F., N'guessan, J. C. Y., Amusant, N. (2023). Wood Extractives: Main Families, Functional Properties, Fields of Application and Interest of Wood Waste. For. Prod. J., 73(3), 194–208. doi: 10.13073/FPJ-D-23-00015
Balk, M., Sofia, P., Neffe, A. T., Tirelli, N. (2023). Lignin, the Lignification Process, and Advanced, Lignin-Based Materials. Int. J. Mol. Sci., 24(14), 11668. doi: 10.3390/ijms241411668
Banoub, J. H., Delmas, G.-H., Joly, N., Mackenzie, G., Cachet, N., Benjelloun-Mlayah, B., Delmas, M. (2015). A critique on the structural analysis of lignins and application of novel tandem mass spectrometric strategies to determine lignin sequencing. J. Mass Spectrom., 50(1), 5–48. doi: 10.1002/jms.3541
Lourenço, A., Pereira, H. (2018). Compositional Variability of Lignin in Biomass. Lignin – Trends and Applications: InTech. doi: 10.5772/intechopen.71208
Rowell, R. M. (2012). Handbook of Wood Chemistry and Wood Composites. Boca Raton, USA: CRC Press. doi: 10.1201/b12487-5
Thompson, J. M. (2018). Infrared Spectroscopy. Pan Stanford, USA: Jenny Stanford Publishing. doi: 10.1201/9781351206037
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, Jr., J. A., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., Pople, J. A. (2004). Gaussian 03 (Revision E.01). Gaussian Inc., Wallingford CT.
Ugliengo, P. (2014). MOLDRAW: a program to display and manipulate molecular and crystalline structures. Torino, Italy. https://www.moldraw.unito.it/_sgg/f10000.htm
Microcal(TM) Origin® Version: 6,0. (1999). Microcal Software, Inc., Northampton, USA. http://www.microcal.com
Lisperguer, J., Perez, P., Urizar, S. (2009). Structure and Thermal Properties of Lignins: Characterization by Infrared Spectroscopy and Differential Scanning Calorimetry. J. Chil. Chem. Soc., 54(4), 460–463. doi: 10.4067/S0717-97072009000400030
Elder, Th. (2007). Quantum Chemical Determination of Young’s Modulus of Lignin. Calculations on a –O-4’ Model Compound. Biomacromolecules, 8(11), 3619–3627. doi: 10.1021/bm700663y
Tokar, A. V. (2021). The Quantum-Chemical Investigation of the IR Absorption Characteristics for Structural Fragments of Lignin Macromolecules. XXV Galyna Puchkovska International School-Seminar Dedicated to the 30th Anniversary of Ukraine’s Independence “Spectroscopy of Molecules and Crystals” (XXV ISSSMC). https://isssmc.org.ua/files/XXV-posters/Tokar_BiomoleculesPolymers.pdf
Merrick, J. P., Moran, D., & Radom, L. (2007). An Evaluation of Harmonic Vibrational Frequency Scale Factors. J. Phys. Chem. A., 111(45), 11683–11700. doi: 10.1021/jp073974n
Derkacheva, O. Yu., & Ishankhodzhaeva, M. M. (2017). Calculation of IR-spectra of structural fragments of lignins. EPJ Web Conf. (XXV-th Congress on Spectroscopy). doi: 10.1051/epjconf/201713203011
Benson, S. W. (1976). Thermochemical Kinetics. John Wiley & Sons, New York-London-Sydney-Toronto. doi: 10.1002/bbpc.19770810919
Williams, A., & Williams, J. (2003). Free Energy Relationships in Organic and Bio-Organic Chemistry. Cambridge, UK: Royal Society of Chemistry.
Anslyn, E. V., Dougherty, D. A. (2005). Modern Physical Organic Chemistry. Sausalito, USA: University Science.
Kharytonov, M. M., Martynova, N. V., Tokar, A. V., Rula, I. V., Babenko, M. G., & Bagorka, M. O. (2019). Sweet sorghum biomass quantitative and qualitative characteristic depending on hybrid and type of soil. INMATEH – Agricultural Engineering, 59(3), 189–196. doi: 10.35633/INMATEH-59-21
Tokar, A. V., Chigvintseva, O. P. (2017). [The hydrogen bonding effects in structural analysis of Phenilon C-2: The quantum-chemical interpretation]. Visn. Dnipropetr. Univ.: Khim. – Bull. Dnipropetr. Univ.: Chem., 25(1), 9–14 (in Russian). doi: 10.15421/081702
Tokar, A., Chigvintseva, O. (2021). The quantum-chemical and spectral criteria for hydrogen bonding efficiency in structural analysis of aramides. Chem. Chem. Technol., 15(1), 9–15. doi: 10.23939/chcht15.01.009
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Oles Honchar Dnipro National University
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).