INFLUENCE OF DRYING AND ROASTING TEMPERATURES AND HUMIDITY ON THE CONTENT OF POLYPHENOLS AND FLAVONOIDS, ANTIOXIDANT ACTIVITY, AND QUALITY OF GINGER TEA

Authors

DOI:

https://doi.org/10.15421/jchemtech.v31i4.286618

Keywords:

antioxidant activity, flavonoid, ginger tea, polyphenols

Abstract

Ginger tea is a popular drink in Asian countries and has many health benefits. However, its production process is complicated as it requires the product to retain biologically active compounds and sensory criteria. The purpose of the research was to determine the heat treatment regime in the drying stage, the moisture content after drying, the roasting temperature, and the appropriate product moisture content to preserve the polyphenol content, antioxidant activity, flavonoid content, and quality of ginger tea products. The research results showed that when ginger was dried at 60 % moisture content, then roasted at 140 °C to 8 % product moisture content, good results were achieved in maintaining the polyphenol content (9.85 ± 0.18 mg GAE/g dw), antioxidant activity (27.02 ± 0.17 µmol TE/g dw), flavonoid content (25.51 ± 0.18 mg QE/100 g dw), water activity (0.48 ± 0.01) and the quality of ginger tea. The optimal experimental conditions obtained can be easily applied to the ginger tea production process on a larger scale in the future.

References

Quoc, L. P. T. (2020). Microwave-assisted extraction of phenolic compounds from ginger (Zingiber officinale Rosc.). Carpathian J. Food Sci. Technol., 12(1), 168–175. https://dx.doi.org/10.34302/crpjfst/2020.12.1.16.

Simon-Brown, K., Solval, K. M., Chotiko, A., Alfaro, L., Reyes, V., Liu, C., Dzandu, B., Kyereh, E., Goldson Barnaby, A., Thompson, I., Xu, Z., Sathivel, S. (2016). Microencapsulation of ginger (Zingiber officinale) extract by spray drying technology. LWT - Food Sci. Technol., 70(1), 119–125. https://dx.doi.org/10.1016/j.lwt.2016.02.030

Styawan, A. A., Susidarti, R. A., Purwanto, Windarsih, A., Rahmawati, N., Sholikhah, I. K. M., Rohman, A. (2022). Review on ginger (Zingiber officinale Roscoe): phytochemical composition, biological activities and authentication analysis. Food Res., 6(4), 443–454. https://dx.doi.org/10.26656/fr.2017.6(4).500

He, H. F., Wei, K., Yin, J., Ye, Y. (2020). Insight into tea flavonoids: composition and chemistry. Food Rev. Int., 37(4), 812–823. https://dx.doi.org/10.1080/87559129.2020.1721530

Adhav, N. R., Deore, B. V. (2022). Role of Nutraceuticals in Metabolic Syndrome. World J. Pharm. Res., 11(12), 782–809.

Li, Y., Karim, M. R., Wang, B., Peng, J. (2022). Effects of green tea (–)-epigallocatechin-3-gallate (EGCG) on cardiac function-a review of the therapeutic mechanism and potentials. Mini-Rev. Med. Chem., 22(18), 2371–238. https://dx.doi.org/10.2174/1389557522666220328161826

Fan, X., Xiao, X., Mao, X., Chen, D., Yu, B., Wang, J., Yan, H. (2021). Tea bioactive components prevent carcinogenesis via anti-pathogen, anti-inflammation, and cell survival pathways. IUBMB Life, 73(2): 328–340. https://dx.doi.org/10.1002/iub.2445

Gan, R. Y., Lui, W. Y., Wu. K., Chan C. L., Dai. S. H., Sui, Z. Q., Corke, H. (2017). Bioactive compounds and bioactivities of germinated edible seeds and sprouts: An updated review. Trends Food Sci. Technol., 59, 1–14. https://dx.doi.org/10.1016/j.tifs.2016.11.010.

Wojdyło, A., Figiel, A., Legua, P., Lech, K., Carbonell-Barrachina, A. A., Hernández, F. (2016). Chemical composition, antioxidant capacity, and sensory quality of dried jujube fruits as affected by cultivar and drying method. Food Chem., 207, 170–179. https://dx.doi.org/10.1016/j.foodchem.2016.03.099

Hossain, M. B., Rai, D. K., Brunton, N. P., Martin-Diana, A. B., Barry-Ryan, C. (2010). Characterization of Phenolic Composition in Lamiaceae Spices by LC-ESI-MS/MS. J Agric. Food Chem., 58(19), 10576–10581. https://dx.doi.org/10.1021/jf102042g

Quoc, L. P. T. (2021). Microwave-assisted extraction of phenolic compounds from coffee (Coffea robusta L. Linden) bee pollen. Herba Pol., 67(3), 37–44. https://dx.doi.org/10.2478/hepo-2021-0015

Quoc, L. P. T., Muoi, N. V. (2018). Ultrasound-assisted extraction of phenolic compounds from Polygonum multiflorum Thunb. roots. Bulg. J. Agric. Sci., 24(2), 229–235.

Mssillou, I., Agour, A., Hamamouch, N., Lyoussi, B., Derwich, E. (2021). Chemical composition and in vitro antioxidant and antimicrobial activities of Marrubium vulgare L. Sci. World J., 2021, 7011493. https://dx.doi.org/10.1155/2021/7011493

Kaur, R., Kaur, K., Ahluwalia, P. (2020). Effect of drying temperatures and storage on chemical and bioactive attributes of dried tomato and sweet pepper. LWT – Food Sci. Technol., 117, 108604. https://dx.doi.org/10.1016/j.lwt.2019.108604

Chandramohan, V. P. (2018). Influence of air flow velocity and temperature on drying

parameters: An experimental analysis with drying correlations. IOP Conf. Ser.: Mater. Sci. Eng., 377, 012197 https://dx.doi.org/10.1088/1757-899X/377/1/012197

Lohani, U. C., Muthukumarappan, K. (2015). Effect of drying methods and ultrasonication in improving the antioxidant activity and total phenolic content of apple pomace powder. J. Food Res., 4(2), 68–77. https://dx.doi.org/10.5539/jfr.v4n2p68

Ruenroengklin, N., Zhong J., Duan, X. W., Yang, B., Li, J. R., Jiang, Y. M. (2008). Effects of various temperatures and pH values on the extraction yield of phenolics from litchi fruit pericarp tissue and the antioxidant activity of the extracted anthocyanins. Int. J. Mol. Sci., 9(7), 1333–1341. https://dx.doi.org/10.3390/ijms9071333

Madrau, M. A., Piscopo, A., Sanguinetti, A. M., Del Caro, A., Poiana, M., Romeo, F. V., Piga, A. (2009). Effect of drying temperature on polyphenolic content and antioxidant activity of apricots. Eur. Food Res. Technol., 228, 441–448. https://dx.doi.org/10.1007/s00217-008-0951-6

Gurgenidze, L., Kanchaveli, T., Kvartskhava, G. (2022). Selecting optimal parameters for obtaining the extract of red grape pomace. Rev. Fac. Nac. Agron. Medellín, 75(1), 9831–9837. https://dx.doi.org/10.15446/rfnam.v75n1.94175

Jamaluddin, N. F., Shaari, A. R., Razak, N. A. (2019). Effect of drying temperature and age of leaves on total phenolic content on Ficus deltoidea. IOP Conf. Ser.: Mater. Sci. Eng., 469, 012053. https://dx.doi.org/10.1088/1757-899X/469/1/012053

Muhamad, N., Sahadan, W., Hoon, H. L. (2018). Effect of drying temperatures and extraction solvents on total phenolic, flavonoid contents and antioxidant properties of immature Manis Terengganu Melon (Cucumis melo). J. Agrobiotech., 9(1S), 114–121.

Roslan, A. S., Ismail, A., Ando, Y., Azlan, A. (2020). Effect of drying methods and parameters on the antioxidant properties of tea (Camellia sinensis) leaves. Food Prod., Process. Nutr., 2, 8. https://dx.doi.org/10.1186/s43014-020-00022-0.

Kishk, Y. F. M., Sheshetawy, E. E. (2010). Optimization ofginger (Zingiber officinale) phenolics extractionconditions and its antioxidant and radicalscavenging activities using response surfacemethodology. World J. Dairy Food Sci., 5(2), 188–196.

Abeysekera, W. K. S. M, Illeperuma, C. K. (2005). Comparison of ginger varieties dried at different temperatures for oil and oleoresin contents. Sri Lankan J. Agric. Sci., 42, 34–42.

Huang, T. C., Chung, C. C., Wang, H. Y., Law, C. L., Chen, H. H. (2011). Formation of 6-shogaol of ginger oil under different drying conditions. Drying Technol., 29(16), 1884–1889. https://dx.doi.org/10.1080/07373937.2011.589554.

Jiménez-Ochoa, J. P., Barrios-Rodríguez, Y. F., Bahamón-Monje, A. F., Gutiérrez-Gúzman, N. (2022). Physicochemical and sensory characteristics of dehydrated coffee pulp in function of drying temperature. Rev. Bras. Eng. Agríc. Ambient, 26(12), 894–900 http://dx.doi.org/10.1590/1807-1929/agriambi.v26n12p894-900.

Rocha, A., Morais, A. M. M. B. (2001). Influence of controlled atmosphere storage on polyphenoloxidase activity in relation to colour changes of minimally processed ‘Jonagored’ apple. Int. J. Food Sci. Technol., 36(4), 425–432. https://dx.doi.org/10.1046/j.1365-2621.2001.00475.x.

Rahman, M. M., Abe, S. R., Rahman, M. S., Kanda, M., Narita, S., Bilano, V., Ota, E., Gilmour, S. Shibuya, K. (2016). Maternal anemia and risk of adverse birth and health outcomes in low- and middle-income countries: Systematic review and meta-analysis. Am. J. Clin. Nutr., 103(2), 495–504. https://dx.doi.org/10.3945/ajcn.115.107896.

Junqueira, J. R. J., Corrêa, J. L. G., Oliveira, H. M., Avelar, R. I. S., Salles Pio, L. A. (2017). Convective drying of cape gooseberry fruits: Effect of pretreatments on kinetics and quality parameters. LWT - Food Sci. Technol., 82, 404–410. https://dx.doi.org/10.1016/j.lwt.2017.04.072.

Latiff, N. A., Abdullah, L. C., Ong, P. Y., Embi, K., Malek, S. A. (2020). The influence of drying temperature on the quality, morphology and drying characteristics of Cosmos caudatus. IOP Conf. Ser.: Mater. Sci. Eng., 991, 012038. http://dx.doi.org/10.1088/1757-899X/991/1/012038.

Krokida, M. K., Philippopoulos, C. (2005). Rehydration of dehydrated foods. Drying Technol., 23(4), 799–830.

Švarc-Gajić, J., Stojanović, Z., Vasiljević, I., Kecojević, I. (2013). Determination of fluorides in pharmaceutical products for oral hygiene. J. Food Drug Anal., 21(4), 384–389. https://dx.doi.org/10.1016/j.jfda.2013.08.006.

Park, M., Lee, K. G. (2021). Effect of roasting temperature and time on volatile compounds, total polyphenols, total flavonoids, and lignan of omija (Schisandra chinensis Baillon) fruit extract. Food Chem., 338, 127836. https://dx.doi.org/10.1016/j.foodchem.2020.127836.

Peng, M., Lu, D., Liu, J., Jiang, B., Chen, J. (2021). Effect of roasting on the antioxidant activity, phenolic composition, and nutritional quality of pumpkin (Cucurbita pepo L.) seeds. Front. Nutr., 8, 647354. https://dx.doi.org/10.3389/fnut.2021.647354.

Gallegos-Infante, J. A., Rocha-Guzman, N. E., Gonzalez-Laredo, R. F., Pulido-Alonso, J. (2010). Effect of processing on the antioxidant properties of extracts from Mexican barley (Hordeum vulgare) cultivar. Food Chem., 119(3), 903–906. https://dx.doi.org/10.1016/j.foodchem.2009.07.044.

Otles, S., Selek, I. (2012). Phenolic compounds and antioxidant activities of chestnut (Castanea sativa Mill.) fruits. Qual. Assur. Saf. Crops Foods, 4(4), 199-205. https://dx.doi.org/10.1111/j.1757-837X.2012.00180.x.

Kocadağlı, T., Gökmen, V. (2016). Effect of roasting and brewing on the antioxidant capacity of espresso brews determined by the QUENCHER procedure. Food Res. Int., 89(2), 976–981. https://dx.doi.org/10.1016/j.foodres.2016.03.004

Altay, K., Hayaloglu, A. A., Dirim, S. N. (2019). Determination of the drying kinetics and energy efficiency of purple basil (Ocimum basilicum L.) leaves using different drying methods. Heat Mass Transfer, 55(15), 2173–2184. https://dx.doi.org/10.1007/s00231-019-02570-9

Thamkaew, G., Sjöholm, I., Galindo, F. G., (2021). A review of drying methods for improving the quality of dried herbs. Crit. Rev. Food Sci. Nutr., 61(11), 1763–1786. https://dx.doi.org/10.1080/10408398.2020.1765309

Yuan, H., Hua, J., Wang, J., Li, J., Deng, Y, Wang, Y. (2018). Analysis and parameter optimization of first-drying process using chain plate dryer with electromagnetic heating for green tea. Trans. Chin. Soc. Agric. Eng., 34(3), 265–272. https://dx.doi.org/10.111975/j.issn.1002-6819.2018.03.035

Wang, J., Li, P., Liu, S., Zhang, B., Hu, Y., Ma, H., Wang, S. (2020). Green tea leaf powder prevents dyslipidemia in high-fat diet-fed mice by modulating gut microbiota. Food Nutr. Res., 64, 3672. https://dx.doi.org/10.29219/fnr.v64.3672

Aydogdu, A., Sumnu, G., Sahin, S. (2015). Effects of microwaveinfrared combination drying on quality of eggplants. Food Bioprocess Technol., 8(6), 1198–1210. https://dx.doi.org/10.1007/s11947-015-1484-1

Mao, A., Su, H., Fang, S., Chen, X., Ning, J., Ho, X. Wan, X. (2018). Effects of roasting treatment on non-volatile compounds and taste of green tea. Int. J. Food Sci. Technol., 53(11), 2586–2594. https://dx.doi.org/10.1111/ijfs.13853

Maskan, M., 2001. Kinetic of color change of kiwifruitsduring hot air and microwave drying. J. Food Eng., 48(2), 169–175. https://dx.doi.org/10.1016/S0260-8774(00)00154-0

Perera, C. O. (2005). Selected quality attributes of dried foods. Drying Technol., 23(4), 717–730. https://dx.doi.org/10.1081/DRT-200054180

Published

2024-01-26