STUDY OF THE PRODUCTIVITY OF PLEUROTUS OSTREATUS MUSHROOM CULTIVATION ON WASTE COFFEE GROUNDS TREATED WITH ALFALFA EXTRACT
DOI:
https://doi.org/10.15421/jchemtech.v31i4.287313Keywords:
recycling; coffee waste; ecobiotechnology; composting; cultivation; Pleurotus ostreatus mushrooms; waste substrate; feed additive, coffee sludgeAbstract
The aim of the study was to evaluate the possibility of using coffee grounds (CG) for the production of several target products - nutritious mushrooms of the genus Pleurotus ostreatus and a protein supplement to the daily diet of farm animals, as well as to assess the effect of alfalfa extract on the main indicators of mushroom cultivation. Six different substrate formulas of coffee sludge (CS) / wheat straw with CS content of 100 %, 80 %, 70 %, 60 %, 50 % and 0 % were investigated using weight, chemical and physicochemical methods. On substrates with higher CS content, the mycelial growth rate and total colonisation time were longer and increased with increasing CS content. The addition of CS did not have a significant effect on the composition of Pleurotus ostreatus mushrooms. The treatment of substrates with alfalfa extract accelerated the colonisation period by 2–3.1 days, and the activation of the stages of complete colonisation of the substrate by mycelium after treatment with alfalfa (Medicago sativa) extract was 14.96–26.56 %. The high proportion of CS in the substrate leads to a decrease in biological efficiency and yield, while the treatment of substrates with alfalfa extract increases biological yield, economic yield and biological efficiency. The nutritional value of mushrooms was improved mainly on substrates with 50 % CS content compared to fruits cultivated on substrates without coffee sludge.
References
International Coffee Organization. Total production by all exporting countries. (2019). https://www.ico.org/prices/po-production.pdf
Klangpetch, W. (2017). Evaluation of antioxidant, anti–pathogenic and probiotic growth stimulatory activities of spent coffee ground polyphenol extracts. Int. Food Res. J. 24, 2246–2252.
Vignoli, J. A., Bassoli, D. G., Benassi, M. T. (2011). Antioxidant activity, polyphenols, caffeine and melanoidins in soluble coffee: The influence of processing conditions and raw material. Food Chem 124, 863–868. doi: 10.1016/j.foodchem.2010.07.008.
Yang, W., Chang, W., Zhang, J., Yeoh, G., Boyer, C., Wang, Ch.–H. (2022). Effects of waste coffee grounds on the mechanical properties, flame retardancy and toxic gas production of epoxy composites, Materials & Design, 111347. https://doi.org/10.1016/j.matdes.2022.111347.
Balzano, M., Loizzo, R., Tundis, P., Lucci, O., Nunez, D. (2020). Spent espresso coffee grounds as a source of anti–proliferative and antioxidant compounds. Innovative Food Science and Emerging Technologies, 59, 102254. https://doi.org/10.1016/j.ifset.2019.102254.
Kamil, M., Ramadan, K., Awad, O., Ibrahim, T. (2019). Environmental impacts of biodiesel production from waste spent coffee grounds and its implementation in a compression ignition engine. Science of the Total Environment, 675, 13–30. https://doi.org/10.1016/j.scitotenv.2019.04.156
Del Castillo, Iriondo–DeHond, A., Martinez–Saez, N., Fernandez–Gomez, B. (2017). Applications of recovered compounds in food products Handbook of coffee processing by–products: Sustainable applications, Elsevier Inc, 171–194 https://doi.org/10.1016/B978–0–12–811290–8.00006–2
Chin, K. L., H’ng, P. S., Chai, E. W., Khoo, P. S., Lee, C. L., Go, W. Z., (2020). Valorization of Lig nocellulosic Food Industry Waste in Malaysia by Accelerated Co–composting Method: Changes in Physicochemical and Microbial Community. Waste Biomass Valorization, 11, 4871–4884. doi:10.1007/s12649–019–00825–4.
Klingel, T., Kremer, J., Gottstein, V., de Rezende, T., Schwarz S. (2020). A review of coffee by–products including leaf, flower, cherry, husk, silver skin, and spent grounds as novel foods. Eur. Union Foods, 9, 665.
Fernandes, A. S., Mello, F. V. C., Filho, S. T., Carpes, R. M., Honório, J. G., Marques, M. R. C., Felzenszwalb, I., Ferraz, E. R. A. (2017). Impacts of discarded coffee waste on human and environmental health. Ecotoxicol. Environ. Saf. 141, 30–36. doi:10.1016/j.ecoenv.2017.03.011.
Mirón–Mérida, V., Barragán–Huerta, B., Gutiérrez–Macías P. (2021). Coffee waste: a source of valuable technologies for sustainable development. Valorization Of Agri–Food Wastes And By–Products, 173–198.
Khomych, G., Krusir, G., Horobets, O., Levchenko, Y., Gaivoronska Z. (2020). Development of Resource Effective and Cleaner Technologies Using the Waste of Plant Raw Materials // Journal of Ecological Engineering, 21, 4, 178–184.
hpttps://doi.org/10.12911/22998993/119814
Fan, L., Pandey, A., Mohan, R., & Soccol, C. R. (2000). Use of various coffee industry residues for the cultivation of Pleurotus ostreatus insolid–state fermentation. Acta Biotechnologica, 20(1), 41–52. https://doi.org/10.1002/abio.370200108
Royse, D. J. (2014). A global perspective on the high five Agaricus, Pleurotus, Lentinula, Auricularia and Flammulina. Proceedings of the 8th International Conference on Mushroom Biology and Mushroom Products (ICMBMPS), 19–22.
Carrasco–Cabrera, C. P., Bell, T. L., & Kertesz, M. A. (2019). Caffeine metabolism during cultivation of oyster mushroom (Pleurotus ostreatus) with spent coffee grounds. Applied Microbiology and Biotechnology, 103(14), 5831–5841. https://doi.org/10.1007/s00253–019–09883–z
Kayode, R. M. O., Olakulehin, T. F., Adedeji, B. S., Ahmed, O., Aliyu, T. H., Badmos, A. H. A. (2015). Evaluation of amino acid and fatty acid profiles of commercially cultivated oyster mushroom (Pleurotus sajor–caju) grown on gmelina wood waste. Niger. Food J., 33, 18–21. doi:10.1016/j.nifoj.2015.04.001.
Cheung, P. C. K. (2010). The nutritional and health benefits of mushrooms. Nutrition Bulletin, 35(4), 292–299. https://doi.org/10.1111/j.1467–3010.2010.01859
Valverde, M. E., Hernández–Pérez, T., Paredes-López, O. (2015). Edible Mushrooms: Improving Human Health and Promoting Quality Life. Int. J. Microbiol., 376387. doi:10.1155/2015/376387.
Khan, M. A., Tania, M. (2012). Nutritional and medicinal importance of Pleurotus mushrooms: An overview. Food Reviews International, 28(3), 313–329. https://doi.org/10.1080/87559129.2011.637267
Cohen, L., Persky, Y., Hadar, R. (2002). Biotechnological applications and potential of wood degrading mushrooms of the genus Pleurotus. Applied Microbiology and Biotechnology, 58(5), 582–594. https://doi.org/10.1007/s00253–002–0930
Alves, R. C., Rodrigues, F., Nunes, M. A., Vinha, A. F., Oliveira, M. B. P. (2017). State of the art in coffee processing by–products. In Handbook of coffee processing by–products. Academic Press., Elsevier. 10.1016/b978-0-12-811290-8.00001-3
Edalli, V. A., Kamanavalli, C. M. (2010). Removal of Phenolic Compounds By Mushroom Polyphenol Oxidase From Pleurotus Species. Ecoscan, 4, 89–92.
Salmones, D., Mata, G., Waliszewski, K. N. (2005). Comparative culturing of Pleurotus spp. on coffee pulp and wheat straw: biomass production and substrate biodegradation. Bioresour. Technol., 96, 537–544. doi:10.1016/j.biortech.2004.06.019.
Girmay, Z., Gorems, W., Birhanu, G., Zewdie, S. (2016). Growth and yield performance of Pleurotus ostreatus (Jacq. Fr.) Kumm (oyster mushroom) on different substrates. AMB Express, 6(87), 1–7. https://doi.org/10.1186/s13568–016–0265–1
Reis, F. S., Barros, L., Martins, A., Ferreira, I. C. F. R. (2012). Chemical composition and nutritional value of the most widely appreciated cultivated mushrooms: An inter–species comparative study. Food Chem. Toxicol., 50, 191–197. doi:10.1016/j.fct.2011.10.056.
Alsanad, A., Sassine, M., El Sebaaly, Y., Abou Fayssal, S. (2020). Spent coffee grounds influence on pleurotus ostreatus production, composition, fatty acid profile, and lignocellulose biodegradation capacity. CyTA – Journal of Food, 19(1), 11–20. https://doi.org/10.1080/19476337.2020.1845243
Chai, W. Y., Krishnan, U. G., Sabaratnam, V., Tan, J. B. (2021). Assessment of coffee waste in formulation of substrate for oyster mushrooms pleurotus pulmonarius and pleurotus floridanus. Future Foods, 4, 100075. https://doi.org/10.1016/j.fufo.2021.100075
Liu Y., Sun J., Luo Z. (2012). Chemical composition of five wild edible mushrooms collected from Southwest China and their antihyperglycemic and antioxidant activity. Food Chem. Toxicol., 50, 1238–1244.
Niedzielski, P., Szostek, M., Budka, A., Budzyńska, S., Siwulski, M., Proch, J., Kalač, Mleczek, M. (2023). Lactarius and Russula mushroom genera – similarities/differences in mineral composition within the Russulaceae family. Journal of Food Composition and Analysis, 115, 104970. https://doi.org/10.1016/j.jfca.2022.104970
Tan, J.B., Yap, W.J., Tan, S.Y., Lim, Y.Y., Lee, S.M. (2014). Antioxidant Content, Antioxidant Activity, and Antibacterial Activity of Five Plants from the Commelinaceae Family. Antioxidants 3(4), 758-769. doi:10.3390/antiox3040758
Pokhrel, P., Shrestha, S., Rijal, S., Rai, K. (2016). A simple HPLC Method for the Determination of Caffeine Content in Tea and Coffee. J. Food Sci. Technol. Nepal, 9, 74. doi:10.3126/jfstn.v9i0.16200
Sugiyama, A., Sano, C.M., Yazaki, K., Sano, H. (2016). Caffeine fostering of mycoparasitic fungi against phytopathogens. Plant Signal. Behav. 11, e1113362. doi:10.1080/15592324.2015.1113362
Xu, H., Zhao, J., Yang, J., Xie, J., Zhang, N., and Jiang, J. (2020). Effects of Apple and Pear Wood Vinegar Components on Pleurotus ostreatus Mycelium Growth, BioResources 15(2), 2961–2970.
Franco, O.; Muñoz, N. (2004). Medicióndela sostenibilidad en la finca bananera de la Universidad Earth: Nemátodos y materia orgánica como indicadores de calidad de suelo. Tesis de licenciatura. Escuela de Agrilcultura de la Región del Trópico Húmedo. CostaRica.
Gupta, S., Summuna, B., Gupta, M., Annepu, S. K. (2018). Edible Mushrooms: Cultivation, Bioactive Molecules, and Health Benefits. 1–33. https://doi.org/ 10.1007/978–3–319–54528–8_86–1
Gonzalez, J.C., Medina, S.C., Rodriguez, A., Osma, J.F., Alméciga–Díaz, C.J., Sánchez, O.F. (2013). Production of Trametes pubescens Laccase under Submerged and Semi–Solid Culture Conditions on Agro–Industrial Wastes. PLoS One 8, e73721. doi:10.1371/journal.pone.0073721
Oduardo, N., Savón, R., Gaime, I., Rodríguez–Pérez, S., Rodriguez, I., Morris, H. (2021). Production of pleurotus ́s ligninolityc enzymes on coffee pulp by solid state fermentation
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Oles Honchar Dnipro National University
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).