• Serhii V. Yushkevych I. M. Frantsevich Institute for Problems in Materials Science, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Ukraine
  • Oksana A. Korniienko I. M. Frantsevich Institute for Problems in Materials Science, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Ukraine
  • Olena Olifan I. M. Frantsevich Institute for Problems in Materials Science, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Ukraine
  • Irina S. Subota National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Ukraine
  • Larysa M. Spasonova National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Ukraine



phase equilibria, phase diagram, solid solution, lattice parameters, functional ceramics


Using information available in the literature, it has been established that in recent times, researchers worldwide have shown increasing interest in materials based on cerium oxide doped with rare earth oxides. As known, phase equilibria in multi-component oxide systems serve as the physicochemical foundation for the development of new materials with improved properties. One of the significant tasks when studying phase equilibria in multi-component systems is to determine the stability boundaries of solid solutions within a specific temperature and concentration range, as well as to identify the existence of ordered phases. In the present study, phase equilibria in the ternary CeO2–La2O3–Yb2O3 system have been investigated over the entire concentration range.  An isothermal section of the phase diagram for the CeO2–La2O3–Yb2O3 system at a temperature of 1100 °C has been constructed during the research. The obtained results indicate the absence of new phase formation in the investigated system under the utilized technological conditions. Using X-ray phase analysis, it has been determined that the investigated system exhibits the formation of solid solutions based on the (F) modification of CeO2 with a fluorite-like structure, cubic (C) and hexagonal (A) modifications of rare earth element oxides, as well as an ordered phase (R) crystallizing in a perovskite-like structure with rhombohedral distortion. The solubility of CeO2 in the crystalline lattice of the ordered perovskite-like phase is approximately 2 mol. %. It has been established that this isothermal section is characterized by the formation of two three-phase regions (A+F+R, R+C+F) and five two-phase regions (A+F, A+R, F+R, C+F, C+R). The majority of the mentioned isothermal section is occupied by the three-phase regions.


Artini, C. (2018). Rare-Earth-Doped Ceria Systems and Their Performance as Solid Electrolytes: A Puzzling Tangle of Structural Issues at the Average and Local Scale. Inorg. Chem., 57, 13047−13062.

Sartori da Silva, F., Miguel de Souza, T. (2017). Novel materials for solid oxide fuel cell technologies: A literature review. Inter. J. Hyd. Ener., 42, 26020-26036. doi:10.1016/j.ijhydene.2017.08.105

Liang, S., Wang, H., Li, Y., Qin, H., Luo, Z., Huang, B., Zhao, X., Zhao, C., Chen, L. (2020). Rare-earth based nanomaterials and their composites as electrode materials for high performance supercapacitors: a review. Sustain. Ener. Fuels, 3825–3847.

Zhang, H., Sun, J., Duo, S., Zhou, X., Yuan, J., Dong, S., Yang, X., Zeng, J., Jiang, J., Deng, L., Cao, X. (2019). Thermal and Mechanical Properties of Ta2O5 Doped La2Ce2O7 Thermal Barrier Coatings Prepared by Atmospheric Plasma Spraying. J. of the Eur. Ceram. Soc, 39, 2379–2388. DOI:10.1016/j.jeurceramsoc.2019.02.041

Zhou, Y., Li, S., Deng, J., Xiong, L., Wang, J., Chen, Y. (2018). Nanoscale heterogeneity and lowtemperature redox property of CeO2-ZrO2-La2O3-Y2O3 quaternary solid solution. Mater.Chem. and Phys., 208, 123–131.

Tauseef, M., Faisl, M., Muhammad, S., Muhammad, R. (2020). Novel photocatalyst and antibacterial agent; direct dual Z-scheme ZnO–CeO2-Yb2O3 heterostructured nanocomposite. Sol. Stat. Scien., 109, 106446–106458.

Coduri, M., Checchia, S., Longhi, M., Ceresoli, D., Scavini, M. (2018). Rare Earth Doped Ceria: The Complex Connection Between Structure and Properties. Front. Chem., 6, 526.

Artini, C., Presto, S., Viviani, M., Massardo, S., Carnasciali, M. M., Gigli, L., Pani, M. (2021). The role of defects association in structural and transport properties of the Ce1-x (Nd0.74 Tm0.26)xO2-x/2 system. J. of Ener. Chem., 60, 494–502. doi:10.1016/j.jechem.2020.11.030

Jun-Gill, K., Young-Il, K., Dae Won, C., Youngku, S. (2015). Synthesis and physico chemica lproperties of La(OH)3 and La2O3 nanostructures. Materials Sciencein Semiconductor Processing, 40, 737–743.

Meiser, F., Cortz, C., Caruso, F. (2004). Biofunctionalization of fluorescent rare-earthdoped lanthanum phosphate colloidal nanoparticle. Angew. Chem. Int. Ed., 43, 5954–5957. doi: 10.1002/anie.200460856

Lavrynenko, O.M., Zahornyi, M. M., Vember, V. V. , Pavlenko, O. Yu., Lobunets, T. F., Kolomys, O. F., Povnitsa, O. Yu., Artiukh, L. O., Naumenko, K. S., Zahorodnia, S. D., Garmasheva, I. L. (2022). Nanocomposites Based on Cerium, Lanthanum, and Titanium Oxides Doped with Silver for Biomedical Application. Condens. Matter, 7(3), 45.

Zahornyi, M. M., Lavrynenko, O. M., Pavlenko, O. Yu, Povnitsa, O. Yu, Artiukh, L. O., Naumenko, K. S., Zahorodnia, S. D., Ievtushenko, A. I. (2023). The antiviral activity of cerium and lanthanum nanooxides modified with silver. Chemistry, Physics and Technology of Surf., 14, 262–272. doi:10.15407/hftp14.02.262

Soni, S., Kumar, S., Dalela, B., Kumar, Sh., Alvi, P.A., Dalela, S. (2018). Defects and oxygen vacancies tailored structural and optical properties in CeO2 nanoparticles doped with Sm3+ cation. Journal of Alloys and Compounds, 752, 520–531. DOI:10.1016/j.jallcom.2018.04.157

Khakhal, H.R., Kumar, S., Patidar, D., Kumar, Sh., Vats, V.S., Dalela, B., Alvi, P.A., Leel, N.S., Dalela, S. (2023). Correlation of oxygen defects, oxide-ion conductivity and dielectric relaxation to electronic structure and room temperature ferromagnetic properties of Yb3+ doped CeO2 nanoparticles. Materials Science and Engineering: B, 297, 116675.

Andrievska, E. R., Kornienko, O. A., Sameliuk, A. V.,Sayir, A. (2011). Phase Relation Studies in the CeO2–La2O3 System at 1100–1500 °С. J. Eur. Ceram. Soc., 31, 1277–1283.

Andrievska, E. R., Kornienko, O.A., Sameliuk, A.V., Sair, A. (2020) Phase relation studies in the CeO2-Eu2O3 system at 1500 to 600 °C in air. J. Eur. Ceram. Soc., 40, 751–758.

Аndrievskaya, E. R., Kornienko, O. A., Bykov, O. І., Sameliuk, A. V., Bohatyriova, Z. D. (2019). Interaction of ceria and ytterbia in air within temperature range 1500–600°C. J. Eur. Ceram. Soc., 39, 2930–2935. https://doi.og/10.1016/j.jeurceramsoc.2019.03.021

Аndrievskaya, O. R., Коrniienko, O. А., Bykov, O. І., Sameliuk, А. V., Bohatyriova, Z. D. (2020). Interaction of ceria and erbia in air within temperature range 1500–600 °C. J. Eur. Ceram. Soc., 40, 3098–3103.

Samoilova, O., Mikhalov, G., Makrvets, L. (2017). Thermodynamic description of phase equilibria in the Cu2O–CeO2–Ce2O3–La2O3 system. Bull. of the South Ural Stat. Univers. Ser. Metall., 17, 16–23. doi:10.14529/met170102

Hrovat, M., Samardžzija, Z., Holc, J., Bernik, S. (1999). Subsolidus phase equilibria in the La2O3–Ga2O3–CeO2 system. J. of Mater. Resear., 14, 4460–4462.

Małecka, M. A., Kępiński, L. (2010). Structural characterization of nano-sized Ce0.5Ln0.5O1.75 (Ln =Yb, Lu) mixed oxides. J. of Microsc., 237, 391–394. doi: 10.1111/j.1365-2818.2009.03268.x

Mandal, B. P., Grover, V., Roy, M., Tayagi, A. K. (2007). X-Ray diffraction and raman spectroscopic Investigation on the phase relation in Yb2O3- and Tm2O3- substituted CeO2. J. of Amer. Soc., 90, 2961–2965. DOI:10.1111/j.1551-2916.2007.01826.x

Kornienko, O. A., Andrievskaya, O.R., Barshchevskaya, H.K. (2021). Phase relations in the system ternary based on ceria, zirconia and ytterbia at 1500° С. J. of Chem. And Technol., 28, 142 152.

Ilatovskaia, M., Sun, S., Saenko, I., Savinykh, G., Fabrichnaya, O. (2020). Experimental Investigation of Phase Relations in the ZrO2-La2O3-Yb2O3 System. J. of Phas. Equilib. And Diff., 41, 311–328. doi:10.1007/s11669-020-00790-9

Coutures, J., Rouanet, A., Verges, R., Foex, M. (1976). Etude a haute temperature des systems formes par le sesquioxyde de lanthane et les sesquioxydes de lanthanides. I: Diagrammes de phases (1400 ℃ < T < T Liquide). J. Solid State Chem., 17, 172–182.

Muller–Buschbaum Hk., Teske Chr. L. (1969). Zur Kenntnis der Kristallstruktur von LaYbO3. Z. Anorg. Allg. Chem., 369, 255–264.

Muller–Buschbaum Hk. (1969). Untersuchung am System La2O3–Yb2O3. Z. Anorg. Allg. Chem. Bd., 369, 249–254.

Traverse J. P., Coutures J., Foex M. (1968).Thermal analysis. Compt. Rend. Acad. Sci., 924–935.

Chudinivych O. V., Andrievskaya O.R., Bohatyriova Z. D. (2014). Interaction of lanthanum and ytterbia at 1600 °C 1500 °С. Curr. Prob. of Phys. Mater. Sci., 23, 12–23.

Chudinovych, О. V., Bykov, O. I., Samelyuk, A. V. (2021). Phase relation studies in the La2O3–Lu2O3–Yb2O3 system at 1500 °С. J. Chem. and Techn., 29(4), 485–494.

Chudinovych, O., Bykov, O., Samelyuk, A. (2021). Interaction of Lanthanum, Lutetium, and Ytterbium Oxides at 1600°C. Powder Metall Met Ceram 60, 337–345

Soloviova, A. E. (2010). Simulation of the formation and dissociation processes of solid solution in СеО2- La2O3 system. Journal of nano- and electronic physics, 1, 30-37.

Lavrynenko, O. M., Bykov, O. I., Bataiev, Y. M., Bataiev, M. M., Kornienko, O. A. (2020). Influence of temperature on the formation of structures in the CeO2-Yb2O3 system. Vìsnik Odesʹkogo Nacìonalʹnogo Unìversitetu: Hìmìâ, 25, 3(75), 76–85.

Ito, K., Tezuka, K., Hinatsu, Y. (2001). Preparetion, Magnetic Susceptibility, and Specific Heat on Interlathanide Perovskites ABO3 (A =La-Nd, B = Dy – Lu). J. Solid State Chem., 157, 173–179. DOI:10.1006/jssc.2000.9071

Obukuro, Yu., Ninomiya, K., Arai, M., Okuyama, Yu., Sakai, G., Matsushima, Sh. (2017) First-principles study on LaYbO3 as the localized f electrons containing system with MBJ–LDA + U approach. Computational Materials Science, 126, 7–11. doi:10.1016/j.commatsci.2016.09.005

Kasyanova, A. V., Lyagaeva, J. G., Vdovin, G. K., Murashkina, A. A., Medvedev, D. A. (2023). Transport properties of LaYbO3-based electrolytes doped with alkaline earth elements. Electrochimica Acta, 439, 141702.

Obukuro, Y., Ninomiya, K., Arai, M., Okuyama, Y., Sakai, G., Matsushima, S. (2017). First-principles study on LaYbO3 as the localized f electrons containing system with MBJ–LDA + U approach. Computational Materials Science, 126, 7–11.

Su W., Yang L., Li B. (2011). Optical properties and thermal stability of LaYbO3 ternary oxide for high-k dielectric application. Applied Surface Science, 257, 7, 2526–2530.

Kornienko O., Yushkevych S., Bykov O., Samelyuk A., Bataiev Y. (2022). Phase Equilibrium in the Ternary CeО2–La2O3–Yb2O3 System at 1500 °С. Solid State Phenomena, 331, 159-172

Kornienko O.A., Sameljuk A.V., Bykov О. І., Yurchenko Yu.V., Barshchevskaya A. K. (2020) Phase Relation Studies in the CeO2–La2O3–Er2O3 System at 1500°C. Journal of the European Ceramic Society, 40, P. 4184–4190.

Xiang P., Ismail S. A., Guo Sh., Jiang L., Han D. (2024) Fluorite-based proton conducting oxides: structures, materials and applications. Materials Advances, 5, 12–29. doi: 10.1039/D3MA00367A





Physical and inorganic chemistry