horse chestnut, Aesculus hippocastanum, alternative solid fuel, briquettes, biomass


The article presents the results of experimental studies using horse chestnut seeds (Aesculus hippocastanum) for the production of briquetted alternative solid fuel. Two types of crushed mixtures of horse chestnut seeds were used for the study: kernel and outer shell and kernel only. Calorimetric studies were carried out to determine the main parameters of the unformed and formed material: higher calorific value, ash content, and moisture content. It was determined that the average value of the higher calorific value for the unformed material is: for the mixture of the kernel and the outer shell of the seeds ~17549 kJ/kg, for the mixture of the kernel ~18351 kJ/kg. For the formed briquetted samples, the higher calorific value is ~18835 kJ/kg and ~18878 kJ/kg, respectively. The obtained data are close to the values of plant-based raw materials that are widely used to produce alternative solid fuels.


Pereira-Lorenzo, S., Lourenço Costa, R., Anagnostakis, S. (2017). Chapter 15. Interspecific Hybridization of Chestnut. In Polyplodiy and Hybridization for Crop Improvement (ed. Mason, A.S.), CRC press.

Massantini, R., Moscetti, R., Frangipane, M. T. (2021). Evaluating progress of Chestnut Quality: A review of recent developments. Trends in Food Science & Technology, 113, 245–254.

Hu, M., Yang, X., Chang, X. (2021). Bioactive phenolic components and potential health effects of Chestnut Shell: A Review. Journal of Food Biochemistry, 45(4).

Pereira-Lorenzo, S., Ramos-Cabrer, A. M., Díaz-Hernández, M. B., Ciordia-Ara, M., Ríos-Mesa, D. (2006). Chemical composition of chestnut cultivars from Spain. Scientia Horticulturae, 107(3), 306–314.

Przyborska, J., Hall, M. C., Concannon, M. (2019). In vitro determination of prebiotic potential of aqueous extract of horse chestnut by-product. Bioactive Carbohydrates and Dietary Fibre, 19, 100190.

Correia, P., Beirão-da-Costa, M. L. (2012). Effect of drying temperatures on starch-related functional and thermal properties of chestnut flours. Food and Bioproducts Processing, 90(2), 284–294.

Demirkesen, I. (2016). Formulation of chestnut cookies and their rheological and quality characteristics. Journal of Food Quality, 39(4), 264–273.

Demirkesen, I., Campanella, O. H., Sumnu, G., Sahin, S., Hamaker, B. R. (2013). A study on staling characteristics of gluten-free breads prepared with chestnut and rice flours. Food and Bioprocess Technology, 7(3), 806–820.

Dudek-Makuch, M., Studzińska-Sroka, E. (2015). Horse chestnut – efficacy and safety in chronic venous insufficiency: An overview. Revista Brasileira de Farmacognosia, 25(5), 533–541.

Wilkinson, J. A., Brown, A. M. G. (1999). Horse chestnut - aesculus hippocastanum: Potential applications in cosmetic skin-care products. International Journal of Cosmetic Science, 21(6), 437–447.

Góral, I., Wojciechowski, K. (2020). Surface activity and foaming properties of saponin-rich plants extracts. Advances in Colloid and Interface Science, 279, 102145.

Timilsena, Y. P., Phosanam, A., Stockmann, R. (2023). Perspectives on Saponins: Food functionality and applications. International Journal of Molecular Sciences, 24(17), 13538.

Ivashchuk, O. S., Atamanyuk, V. M., Chyzhovych, R. A., Kiiaieva, S. S., Zherebetskyi, R. R., Sobechko, I. B. (2022). Preparation of an alternate solid fuel from alcohol distillery stillage. Voprosy Khimii i Khimicheskoi Tekhnologii, (1), 54–59.

Ivashchuk, O. S., Atamanyuk, V. M., Chyzhovych, R. A., Kiiaieva, S. S., Duleba, V. P., Sobechko, I. B. (2022) Research of solid fuel briquettes obtaining from brewer’s spent grain. Journal of Chemistry and Technologies, 30(2), 216–221.

Ivashchuk, O. S., Atamanyuk, V. M., Chyzhovych, R. A., Sobechko, I. B. (2022). Using coffee production waste as a raw material for solid fuel. Journal of Chemistry and Technologies, 30(4), 588–594.

Ivashchuk, O. S., Atamanyuk, V. M., Gnativ, Z. Ya., Chyzhovych, R. A., Zherebetskyi, R. R. (2021). Research into kinetics of filtration drying of alcohol distillery stillage. Voprosy Khimii i Khimicheskoi Tekhnologii, 4, 58–65.

Chaloupkova, V., Ivanova, T., Ekrt, O., Kabutey, A., Herak, D. (2018). Determination of particle size and distribution through image-based macroscopic analysis of the structure of biomass briquettes. Energies, 11(2), 331.

Manziy, S., Kopanskiy, M., Ferenc, O. (2010). Porivnjaljni kharakterystyky ghranuljovanogho ta bryketovanogho biopalyva. Naukovyi Visnyk Natsiohalnoho Lisotekhnichnoho Universytetu Ukrainy, 20(3), 88–90 (in Ukrainian).

Ivashchuk, O. S., Atamanyuk, V. M., Chyzhovych, R. A., Manastyrska, V. A., Sobechko, I. B. (2023). Using of barley bran in the production of alternative solid fuel from coffee production waste. Journal of Chemistry and Technologies, 31(2), 318–324.

Khivrych, O. B., Kvak, V. M., Kas’kiv, V. V., Mamajsur, V. V., Makarenko, A. S. (2011). Energetychni roslyny yak alternatyva tradycijnym vydam palyva. Agrobiologiya, 6, 153–156 (in Ukrainian).

Wróbel, M., Jewiarz, M., Mudryk, K., & Knapczyk, A. (2020). Influence of raw material drying temperature on the Scots pine (Pinus sylvestris L.) biomass agglomeration process ‒ a preliminary study. Energies, 13(7), 1809.

García-Maraver, A., Popov, V., Zamorano, M. (2011). A review of European standards for pellet quality. Renewable Energy, 36(12), 3537–3540.