ATOMIC-ABSORPTION DETERMINATION OF COBALT IN TABLE SALT AND BRINES

Authors

DOI:

https://doi.org/10.15421/jchemtech.v32i3.292361

Keywords:

table salt; sample preparation; extraction; ultrasound; Triton X-100; atomic absorption spectrometry

Abstract

The extraction of cobalt in the form of diethyldithiocarbamate with methyl isobutyl ketone and chloroform from sodium chloride solutions was investigated. It was found that the interfering effect of sodium chloride begins at 50 g/dm3 when using methyl isobutyl ketone, and at 90 g/dm3 when using chloroform. It is shown that fulvic acids in concentrations above 12.0 mg/dm3 underestimate the results of cobalt determination, which makes quantitative determination impossible without the destruction of soluble organic compounds. It is proposed to use ultrasound with a frequency of 1844 kHz and an intensity of ≥ 5 W/cm2 for at least 60 s to destroy soluble organic substances of cobalt. It was found that when using the extraction system sodium diethyldithiocarbamate methyl isobutyl ketone, the quantification limit of cobalt determination is 0.90 mg/kg, which is insufficient for the analysis of real objects of table salt. When using the extraction system sodium diethyldithiocarbamate chloroform, the quantification limit of cobalt determination is 0.04 mg/kg, which is insufficient for the determination of cobalt in vacuum evaporated table salt. The influence of surfactant concentrations on the analytical signal value in the atomic absorption determination of cobalt was studied. It is shown that the maximum sensitivity of cobalt determination is achieved when using aqueous solutions of Triton X-100 (ω = 5 %). In this case, the sensitivity of cobalt determination increases by 1.53 times. A method for the determination of cobalt in table salt and brines has been developed. The limit of detection of cobalt is 0.026 mg/kg.

Author Biography

Аlexandr N. Baklanov, V.N. Karazin Kharkiv National University

Зав. кфедры охраны труда и экологической безопасности Украинской инженерно-педагогической академии, професор кафедрыхимической метрологии Харьковского национального университета имени В.Н. Каразина

References

Eftekhari, M. H., Mazloomi, S.M., Akbarzadeh, M., Ranjbar, M. (2014). Content of toxic and essential metals in recrystallized and washed table salt in Shiraz, Iran. J Environ Health Sci Engineer. 12(10), 10–23. https://doi.org/10.1186/2052-336X-12-10

Soylak, M., Peker, D. S. K., Turkoglu, O. (2019). Heavy metal contents of refined and unrefined table salts from Turkey, Egypt and Greece. Environ. Monit. Assess. 143(3), 267–272. https://doi.org/10.1007/s10661-007-9975-9

Heshmati, A. A. (2014). Determination of Heavy Metal Levels in Edible Salt. Avicenna J. Med. Biochem. 2(1), 7-19836. https://doi.org/10.17795/ajmb-19836

Carmen Yebra, M. (2012). A green analytical method using ultrasound in sample preparation for the flow injection determination of iron, manganese, and zinc in soluble solid samples by flame atomic absorption spectrometry. J. Anal. Methods Chem. 298217. https://doi.org/10.1155/2012/298217

Yurchenko, O. I., Chernozhuk, T. V., Pateleymonov, A. V., Baklanova, L. V., Baklanov, O. M. (2022). [Analytical chemistry of table salt, brines and highly mineralized waters]. Kharkiv: V. N. Karazin Kharkiv National University (in Ukrainian).

Karatepe, A. U., Soylak, M., Elci, L. (2016). Cobalt determination in natural water and table salt samples by flame atomic absorption spectroscopy on-line solid phase extraction combination. Anal. Lett. 35(12), 2363–2374. https://doi.org/10.1081/AL-120016109

Narin, I., Soylak, M. (2018). Enrichment and determinations of nickel(II), cadmium(II), copper(II), cobalt(II) and lead (II) ions in natural waters, table salts, tea and urine samples as pyrrolydine dithiocarbamate chelates by membrane filtration-flame atomic absorption spectrometry combination. Anal. Chim. Acta. 493, 205–212. https://doi.org/10.1016/S0003-2670(03)00867-5

Zaruba, S., Bozóová, V., Vishnikin, A.B., Bazeľ, Ya. R., Šandrejová, J., Gavazov, K. Andruch, A. (2017). Vortex-assisted liquid-liquid microextraction procedure for iodine speciation in water samples. Microchem. J. 132, 59–68. https://doi.org/10.1016/j.microc.2017.01.004

Tamen, A.-E., Vishnikin, A. (2021). In-vessel headspace liquid-phase microextraction. Anal. Chim. Acta 1172, 338670. https://doi.org/10.1016/j.aca.2021.338670

Simonova, T. N., Dubrovina, V. A., Vishnikin, A. B. (2016). Speciation of chromium through aqueous two-phase extraction of complexes of Cr(III) with 4-(2-pyridylazo)resorcinol and Cr(VI) with 1,5-diphenylcarbazide. J. Serb. Chem Soc. 81(6), 645–659. https://doi.org/10.2298/JSC150630016S

Introduction to Microwave Sample Preparation. Theory and Practice. Eds. H. M. Kingston, L. B. Jassie. Washington: American Chemnical Society.

Priego-Capote, F., Luque de Castro, M. D. (2004). Analytical uses of ultrasound I. Sample preparation. TrAC – Trends Anal. Chem. 23, 644–653. https://doi.org/10.1016/j.trac.2004.06.006

Yurchenko, O., Baklanov, A., Chernozhuk, T. (2021). Chemical applications of ultrasound: On the use of ultrasound in the analysis and technology of brains and sodium chloride solutions. LAP LAMBERT Academic Publishing.

Zhang, C., Richard, A., Hao, W., Liu C., Tang, Z. (2022). Trace metals in saline waters and brines from China: Implications for tectonic and climatic controls on basin-related mineralization. J Asian Earth Sci. 233, 105263. https://doi.org/10.1016/j.jseaes.2022.105263

Ferreira, S. L. C., Miró, M., Da Silva E. G. P., Matos, G. D., Dos Reis, P. S., Brandao, G. C. (2010). Slurry sampling – An analytical strategy for the determination of metals and metalloids by spectroanalytical techniques. Appl. Spectrosc. Rev. 45, 44–62. https://doi.org/10.1080/05704920903435474

Vishnikin, A. B., Svinarenko, T. Ye., Sklenářová, H., Solich, P., Bazel, Ya. R., Andruch, V. (2010). 11-Molybdobismuthophosphate – a new reagent for the determination of ascorbic acid in batch and sequential injection systems. Talanta 80(5), 1838–1845. https://doi.org/10.1016/j.talanta.2009.10.031

Amorim, F. A. C., Ferreira, S. L. C. (2005). Determination of cadmium and lead in table salt by sequential multi-element flame atomic absorption spectrometry. Talanta 65, 960–964. https://doi.org/10.1016/j.talanta.2004.08.027

Khaniki, G. R. J., Dehghani, M. H., Mahvi, A. H., Nazmara, S. (2007). Determination of trace metal contaminants in edible salts in Tehran (Iran) by atomic absorption spectrophotometry. J. Biol. Sci. 7, 811–814. https://doi.org/10.3923/jbs.2007.811.814

Duran, C., Camoglu, A. Y., Ozdes, D., Bekircan, O. (2023). A green and simplified approach for the quantitative and sensitive analysis of heavy metal ions in sea and stream waters. Water Sci. Technol. 88, 2862–2972. https://doi.org/10.2166/wst.2023.371

Chmilenko, F. A., Baklanov, A. N., Sidorova, L. P., Lebedeva, E. V., Lebedeva, A. V. (2001). Ultrasonic intensification of sample preparation for the spectrophotometric determination of arsenic in foodstuffs. J. Anal. Chem. 56, 13–16. https://doi.org/10.1023/A:1026755025799

Yurchenko, O. I., Chernozhuk, Т. V., Baklanov, A. N., Baklanova, L. V., Kravchenko O. A. (2018). Analytical signal amplification technologies in sonoluminescence spectroscopy by double-frequency ultrasound. Methods Objects Chem. Anal. 13, 103–109. https://doi.org/10.17721/moca.2018.103-109

Published

2024-10-20