STUDY OF VANADATE UNITS USING DENSITY FUNCTIONAL THEORY: ELECTRONIC PROPERTIES AND REACTIVITY

Authors

DOI:

https://doi.org/10.15421/jchemtech.v32i2.296585

Keywords:

Vanadate units; DFT; Global reactivity indices; electrostatic potential; nucleophilic; FUKUI indexes.

Abstract

The vanadate units have been theoretically investigated through density functional theory calculations. The global reactivity indices have been optimized. The obtained results revealed that the (Q0) [VO4]3 unit shows an electron-donor character, while the units Q1, Q2, and Q3 units are evidenced to exhibit an electron-acceptor feature. The transition from one unit to another is found to be accompanied by an increase in the number of bridging oxygen atoms, in accordance with the highlighted changes in Mulliken charges. Moreover, the analysis of the optimized electrostatic potential surfaces indicated a higher likelihood of nucleophilic attacks on the vanadium atoms. Predictions for infrared and Raman spectra were also conducted, revealing changes in symmetric and asymmetric vibrational bands as the number of bridging oxygen atoms varied. Additionally, Fukui indices were employed to identify the preferred sites for the electrophilic attack within the (Q0) [VO4]3 unit on the Q1, Q2, and Q3 vanadate units.

References

Lee, J. C., Kim, E. Y., Chung, K. W., Kim, R. H., Jeon, S. (2021). A review on the metallurgical recycling of vanadium from slags: towards a sustainable vanadium production. J. Mater. Res. Technol., 12, 343–364. https://doi.org/10.1016/j.jmrt.2021.02.065

Wachs, I. E. (2013). Catalysis science of supported vanadium oxide catalysts. Dalton Trans., 42(33), 11762–11769.

Lourenssen, K., Williams, J., Ahmadpour, F., Clemmer, R., Tasnim, S. (2019). Vanadium redox flow batteries: A comprehensive review. J. Energy Storage, 25, 100844. https://doi.org/10.1016/j.est.2019.100844

Liu, K. Lee, S. Yang, S., Delaire, O., Wu, J. (2018). Recent progresses on physics and applications of vanadium dioxide. Mater. Today, 21(8), 875–896. https://doi.org/10.1016/j.mattod.2018.03.029

Muroga, T., Chen, J. M., Chernov, V. M., Kurtz, R. J., Le Flem, M. (2014). Present status of vanadium alloys for fusion applications. J. Nucl. Mater. 455(1-3), 263–268.

Scibior, A., Pietrzyk, L., Plewa, Z., Skiba, A, (2020). Vanadium: risks and possible benefits in the light of a comprehensive overview of its pharmacotoxicological mechanisms and multi-applications with a summary of further research trends, Journal of Trace Elements in Medicine and Biology. 61, 126508. https://doi.org/10.1016/j.jtemb.2020.126508

Menictas, C., Skyllas-Kazacos, M. (2011). Performance of vanadium-oxygen redox fuel cell. J. Appl. Electrochem. 41, 1223–1232.

Skyllas‐Kazacos, M., Kazacos, G., Poon, G., Verseema, H. (2010). Recent advances with UNSW vanadium‐based redox flow batteries. Int. J. Energy Res. 34(2), 182–189.

Webster, S., Czerw, R., Nesper, R., DiMaio, J., Xu, J. F., Ballato J., Carroll, D. L. (2004). Optical properties of vanadium oxide nanotubes. J. Nanosci. Nanotechnol. 4(3), 260–264.

doi: 10.1166/jnn.2004.035

Sindhu, S., Sanghi, S. A. Agarwal, Seth Sonam, V. P. Kishore, N. (2005). The role of V2O5 in the modification of structural, optical and electrical properties of vanadium barium borate glasses. Phys. B: Condens. Matter. 365, 65.

Lakshmikantha, R., Ayachit, N.H., Anavekar, R. V. (2014). Optical, physical and structural studies of vanadium doped P2O5–BaO–Li2O glasses, Journal of Physics and Chemistry of Solids 75 168–173.

Khattak, G. D., Tabet, N., Wenger, L. E. (2005). Structural properties of glasses in the series (SrO)x(V2O5)1−x, (SrO)0.5−y(B2O3)y(V2O5)0.5, and (SrO)0.2(B2O3)z(V2O5)0.8−z. Phys. Rev. B, 72, 104203.

Brow, R. K. Non- Cryst, J. (2000). The structure of simple phosphate glasses. Solids, 263-264, 1–28.

Ehrt, D. (2015). Phosphate and fluoride phosphate optical glasses — properties, structure and applications, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B, 56(6), 217–234.

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman J. R. (2009). Gaussian 09 revision C, 1. Gaussian Inc, Wallingford C.T.

Khan, M. F. R., Rashid, B., Rahman, M. M., Al Faruk, M. M., Rahman, M., Rashid, M. A. (2017). Effects of solvent polarity on solvation free energy, dipole moment, polarizability, hyperpolarizability and molecular reactivity of aspirin. Int. J. Pharm. Pharm. Sci, 9(2), 217–221

Vijayakumar, S., Kolandaivel, P. (2006). Study of static dipole polarizabilities, dipole moments, and chemical hardness for linear CH3–(CC) n–X (X= H, F, Cl, Br, and NO2 and n= 1–4) molecules. J. Mol. Struct. Theochem. 770(1-3), 23–3.

Afzal, Q. Q., Jaffar, K., Ans, M., Rafique, J., Iqbal, J., Shehzad, R. A., Mahr, M. S. (2022). Designing benzothiadiazole based highly efficient non-fullerene acceptor molecules for organic solar cells. Polymer, 238, 124405. https://doi.org/10.1016/j.polymer.2021.124405

Valero-Romero, M. J. Cabrera-Molina, A. Gomero-Pérez, M. O Rodrigez-Mirasol J., Cordero, T. (2014). Catalysis Today, 233–241.

Dasireddy, V. D. B. C., Singh S., Friedrich, H. B. (2012). Applied Catalysis A: General, 421-422, 58–69.

Cheng, L. Ferguson, G. L. Zygmunt S. A., Curtiss, L. A. (2013). Journal of Catalysis, 302, 31–36.

Buyukuslu, H., Akdogan, M., Yildirim, G., Parlak, C. (2010). Ab initio Hartree-Fock and density functional theory study on characterization of 3-(5-methylthiazol-2-yldiazenyl)-2-phenyl-1H-indole. Spectrochim. Acta A, 75, 1362.

Parr, R., Szentpaly, L., Liu, S. (1999). Electrophilicity index. J. Am. Chem. Soc., (121) 1922.

Lipkowitz, K. B., Boyd, D. B. (2009). Reviews in Computational Chemistry, Vol. 5, John Wiley & Sons.

Naray-Szabo, G., Ferenczy, G. (1995). Molecular electrostatics. Chem. Rev. 95, 829.

Nataraj, A., Balachandran, V., Karthick, T. (2013). Molecular orbital studies (hardness, chemical potential, electrophilicity, and first electron excitation), vibrational investigation and theoretical NBO analysis of 2-hydroxy-5-bromobenzaldehyde by density functional method. J. Mol. Struct., 1031, 221–233.

Guo, H. W., Wang, X. F., Gong, Y. X., Gao D. N. (2010). Mixed alkali effect in xK2O-(30−x) Na2O-30P2O5-40ZnO glasses. J Non Cryst Solids. 356, 2109–2113.

Ternane, R., Ferid, M., Guyot, Y. Malika, T. A., Boulon, G. (2008). Spectroscopic properties of Yb3+ in NaYbP2O7 diphosphate single crystals. J Alloys Comp., 464, 327–331.

Abid, M., Et-tabirou, M., Hafid, M. (2001). Glass forming region, ionic conductivity and infrared spectroscopy of vitreous sodium lead mixed phosphates. Mater. Res. Bull., 36, 407–421.

Bet-thet, P., Bretey, E., Berthon J., d’Yvoire, F., Belkebir, A., Rulmont, A., Gilbert, B. (1994). Structure and ion transport properties of Na2O Ga2O3 P2O5 glasses. Solid State Ionics, 70/71, 476–481.

Mandlule, A., Döhler, F., VanWüllen, L., Kasuga, T., Brauer, D. S. (2014). Changes in structure and thermal properties with phosphate content of ternary calcium sodium phosphate glasses. J. Non Cryst. Solids, 392–393, 31–38.

Vanasundari, K., Balachandran, V., Kavimani, M., Narayana, B. (2017). Spectroscopic investigation, vibrational assignments, Fukui functions, HOMO-LUMO, MEP and molecular docking evaluation of 4 – [(3, 4 – dichlorophenyl) amino] 2 – methylidene 4 – oxo butanoic acid by DFT method, Journal of Molecular Structure, 1147, 136–147.

Haldhar, R., Prasad, D., Mandal, N., Benhiba, F., Bahadur, I., Dagdag, O. (2021). Anticorrosive properties of a green and sustainable inhibitor from leaves extract of Cannabis sativa plant: Experimental and theoretical approach. Colloids Surf. A: Physicochem. Eng. 614, 126211. https://doi.org/10.1016/j.colsurfa.2021.126211

Downloads

Published

2024-07-10

Issue

Section

Physical and inorganic chemistry