SYNTHESIS OF NOVEL 1-(3-PHENYLBENZO[C]ISOXAZOL-5-YL)-1H-1,2,3-TRIAZOLE-4-CARBOXAMIDES AND THEIR ANTIBACTERIAL AND ANTIFUNGAL ACTIVITIES
DOI:
https://doi.org/10.15421/jchemtech.v32i2.297699Keywords:
azide; benzo[c]isoxazoles; 1H-1,2,3-triazole-4-carboxamides; antimicrobial.Abstract
Novel 1-(3-arylbenzo[c]isoxazol-5-yl)-1H-1,2,3-triazole-4-carboxamides were designed, synthesizing and evaluated for antimicrobial activity toward five key ESKAPE pathogenic bacteria, one Gram‐positive bacteria methicillin‐resistant Staphylococcus aureus (ATCC 43300), four Gram‐negative bacteria, Escherichia coli (ATCC 25922), Klebsiella pneumonia (ATCC 700603), Acinetobacter baumannii (ATCC 19606), and Pseudomonas aeruginosa (ATCC 27853) and antifungal activity towards two pathogenic fungal strains Candida albicans (ATCC 90028) and Cryptococcus neoformans var. Grubii (H99; ATCC 208821). The target compounds were obtained in a convenient synthetic path including consequent Dimroth cyclocondensation of 4-nitrophenyl azide with β-ketoesters, vicarious nucleophilic substitution in nitroaryl fragments and amidation of 1,2,3-triazole-4-carboxylic acid motif. In this way, a mini combinatorial library of 24 compounds was obtained with good overall yields. Five compounds, 7a, 7b, 7i, 7t and 7u, reduced the growth of microorganisms by approximately 20 %. Compounds 7b, 7i, and 7u demonstrated the inhibitory activity towards Staphylococcus aureus. In contrary 7a and 7t towards Cryptococcus neoformans. The data obtained will be used for further design and scaffold optimization.
References
Yuan, K., Gong, Y. M., Liu, L., Sun, Y. K., Tian, S. S., Wang, Y. J., Zhong, Y., Zhang, A. Y., Su, S. Z., Liu, X. X., Zhang, Y. X. (2021). Prevalence of posttraumatic stress disorder after infectious disease pandemics in the twenty-first century, including COVID-19: a meta-analysis and systematic review. Mol. Psychiatry, 26(9), 4982–4998.
https://doi.org/10.1038/s41380-021-01036-x
Fiest, K. M., Parsons Leigh, J., Krewulak, K. D., Plotnikoff, K. M., Kemp, L. G., Ng-Kamstra, J., Stelfox, H. T. (2021). Experiences and management of physician psychological symptoms during infectious disease outbreaks: a rapid review. BMC psychiatry, 21(1), 1–14.
https://doi.org/10.1186/s12888-021-03090-9
Alsuwailem, A. A. S., Saudagar, A. K. J. (2021). Impact of infectious diseases on international business: A comprehensive literature review. J. Inter. Math., 24(1), 197–226. https://doi.org/10.1080/09720502.2020.1833461
Pianalto, K. M., Alspaugh, J. A. (2016). New horizons in antifungal therapy. J. Fungi., 2(4), 26.
https://doi.org/10.3390/jof2040026
Denning, D., Jugessur, J. (2016). Hidden crisis: how 150 people die every hour from fungal infection while the world turns a blind eye. Global Action Fund Fungal Infect, 1–3. (accessed on 29 January 2024); Available online: https://www.gaffi.org/wp-content/uploads/GAFFI-Leaflet-June-2016-DWD-hidden-crisis.pdf
Houšť, J., Spížek, J., Havlíček, V. (2020). Antifungal drugs. Metabolites, 10(3), 106.
https://doi.org/10.3390/metabo10030106
Bongomin, F., Gago, S., Oladele, R.O., Denning, D.W. (2017). Global and multi-national prevalence of fungal diseases–estimate precision. J. Fungi., 3(4), 57. https://doi.org/10.3390/jof3040057
Mo, C. Y., Culyba, M. J., Selwood, T., Kubiak, J. M., Hostetler, Z. M., Jurewicz, A. J., Keller, P. M., Pope, A. J., Quinn, A., Schneck, J., Widdowson, K. L., Kohli, R. M. (2017). Inhibitors of LexA autoproteolysis and the bacterial SOS response discovered by an academic–industry partnership. ACS Infect. Dis., 4(3), 349–359.
https://doi.org/10.1021/acsinfecdis.7b00122
Mo, C. Y., Manning, S. A., Roggiani, M., Culyba, M. J., Samuels, A. N., Sniegowski, P. D., Goulian, M., Kohli, R. M. (2016). Systematically altering bacterial SOS activity under stress reveals therapeutic strategies for potentiating antibiotics. MSphere, 1(4), e00163–16. https://doi.org/10.1128/mSphere.00163-16
Mo, C. Y. (2016). Make antibiotics great again: Combating drug resistance by targeting Lexa, a regulator of bacterial evolution. Publicly Accessible Penn Dissertations, 2489.
https://repository.upenn.edu/edissertations/2489
Jadhav, R. P., Raundal, H. N., Patil, A. A., Bobade, V. D. (2017). Synthesis and biological evaluation of a series of 1,4-disubstituted 1,2,3-triazole derivatives as possible antimicrobial agents. J. Saudi Chem. Soc., 21(2), 152–159. https://doi.org/10.1016/j.jscs.2015.03.003
Sall, C., Ayé, M., Bottzeck, O., Praud, A., Blache, Y. (2018). Towards smart biocide-free anti-biofilm strategies: Click-based synthesis of cinnamide analogues as anti-biofilm compounds against marine bacteria. BioOrg. Med. Chem. Lett., 28(2), 155–159.
https://doi.org/10.1016/j.bmcl.2017.11.039
Wang, Z. J., Gao, Y., Hou, Y. L., Zhang, C., Yu, S. J., Bian, Q., Li, Z.M., Zhao, W. G. (2014). Design, synthesis, and fungicidal evaluation of a series of novel 5-methyl-1H-1, 2,3-trizole-4-carboxyl amide and ester analogues. Eur. J. Med. Chem., 86, 87–94.
https://doi.org/10.1016/j.ejmech.2014.08.029
Pokhodylo, N., Manko, N., Finiuk, N., Klyuchivska, O., Matiychuk, V., Obushak, M., Stoika, R. (2021). Primary discovery of 1-aryl-5-substituted-1H-1,2,3-triazole-4-carboxamides as promising antimicrobial agents. J. Mol. Struct., 1246, 131146.
https://doi.org/10.1016/j.molstruc.2021.131146
Prasad, B., Nayak, V. L., Srikanth, P. S., Baig, M. F., Reddy, N. S., Babu, K. S., Kamal, A. (2019). Synthesis and biological evaluation of 1-benzyl-N-(2-(phenylamino)pyridin-3-yl)-1H-1,2,3-triazole-4-carboxamides as antimitotic agents. BioOrg. Chem., 83, 535–548. https://doi.org/10.1016/j.bioorg.2018.11.002
Reddy, V. G., Bonam, S. R., Reddy, T. S., Akunuri, R., Naidu, V. G. M., Nayak, V. L., Bhargava, S. K., Kumar, H. S., Srihari, P., Kamal, A. (2018). 4β-amidotriazole linked podophyllotoxin congeners: DNA topoisomerase-IIα inhibition and potential anticancer agents for prostate cancer. Eur. J. Med. Chem., 144, 595–611.
https://doi.org/10.1016/j.ejmech.2017.12.050
Elamari, H., Meganem, F., Herscovici, J., Girard, C. (2011). Chemoselective preparation of disymmetric bistriazoles from bisalkynes. Tetrahedron Lett., 52(6), 658–660. https://doi.org/10.1016/j.tetlet.2010.11.141
Elamari, H., Slimi, R., Chabot, G. G., Quentin, L., Scherman, D., Girard, C. (2013). Synthesis and in vitro evaluation of potential anticancer activity of mono-and bis-1,2,3-triazole derivatives of bis-alkynes. Eur. J. Med. Chem., 60, 360–364.
https://doi.org/10.1016/j.ejmech.2012.12.025
Duan, H., Arora, D., Li, Y., Setiadi, H., Xu, D., Lim, H. Y., Wang, W. (2016). Identification of 1,2,3-triazole derivatives that protect pancreatic β cells against endoplasmic reticulum stress-mediated dysfunction and death through the inhibition of C/EBP-homologous protein expression. BioOrg. Med. Chem., 24(12), 2621–2630. https://doi.org/10.1016/j.bmc.2016.03.057
Taddei, M., Ferrini, S., Giannotti, L., Corsi, M., Manetti, F., Giannini, G., Vesci, L., Milazzo, F. M., Alloatti D., Guglielmi, M. B., Castorina,. M., Cervoni, M. L., Barbarino, M., Foderà, R., Carollo, V., Pisano, C., Armaroli, S., Cabri, W. (2014). Synthesis and evaluation of new Hsp90 inhibitors based on a 1,4,5-trisubstituted 1,2,3-triazole scaffold. J. Med. Chem., 57(6), 2258–2274.
https://doi.org/10.1021/jm401536b
Pokhodylo, N., Shyyka, O., Matiychuk, V. (2014). Synthesis and anticancer activity evaluation of new 1,2,3-triazole-4-carboxamide derivatives. Med. Chem. Res., 23, 2426–2438.
https://doi.org/10.1007/s00044-013-0841-8
Pokhodylo, N. T., Shyyka, O. Ya., Finiuk, N. S. (2019) Anticancer activity evaluation of thieno[3,2-e][1,2,3]triazolo[1,5-a]pyrimidines and thieno[2,3-e][1,2,3]triazolo[1,5-a]pyrimidine derivatives, Biopolym. Cell. 35, 321–330.
http://dx.doi.org/10.7124/bc.000A0F
Wang, L., Xu, S., Liu, X., Chen, X., Xiong, H., Hou, S., Zou, W., Tang, Q., Zheng, P., Zhu, W. (2018). Discovery of thinopyrimidine-triazole conjugates as c-Met targeting and apoptosis inducing agents. BioOrg. Chem., 77, 370–380. https://doi.org/10.1016/j.bioorg.2018.01.037
Pokhodylo, N., Finiuk, N., Klyuchivska, O., Тupychak, M. A., Matiychuk, V., Goreshnik, E., Stoika, R. (2022). Novel N-(4-thiocyanatophenyl)-1H-1,2,3-triazole-4-carboxamides exhibit selective cytotoxic activity at nanomolar doses towards human leukemic T-cells. Eur. J. Med, Chem., 241, 114633. https://doi.org/10.1016/j.ejmech.2022.114633
Pokhodylo, N. T., Shyyka, O. Y., Matiychuk, V. S., Obushak, M. D., Pavlyuk, V. V. (2017). A novel base-solvent controlled chemoselective azide attack on an ester group versus keto in alkyl 3-substituted 3-oxopropanoates: mechanistic insights. ChemistrySelect, 2(21), 5871–5876.
https://doi.org/10.1002/slct.201700577
Bräse, S., Gil, C., Knepper, K., Zimmermann, V. (2005). Organic azides: an exploding diversity of a unique class of compounds. Angew. Chem. Int. Ed., 44(33), 5188–5240. https://doi.org/10.1002/anie.200400657
Pokhodylo, N. T., Matiychuk, V. S., Obushak, M. D. (2010). Synthesis of isothiocoumarin derivatives. Chem. Heterocycl. Compd., 46, 140–145.
https://doi.org/10.1007/s10593-010-0484-3
Jalani, H. B., Karagöz, A. Ç., Tsogoeva, S. B. (2017). Synthesis of substituted 1,2,3-triazoles via metal-free click cycloaddition reactions and alternative cyclization methods. Synthesis, 49(01), 29–41.
https://doi.org/10.1055/s-0036-1588904
John, J., Thomas, J., Dehaen, W. (2015). Organocatalytic routes toward substituted 1,2,3-triazoles. Chem. Commun., 51(54), 10797–10806.
https://doi.org/10.1039/C5CC02319J
Ramachary, D. B., Gujral, J., Peraka, S., Reddy, G. S. (2017). Triazabicyclodecene as an organocatalyst for the regiospecific synthesis of 1,4,5-trisubstituted N-vinyl-1,2,3-triazoles. Eur. J. Org. Chem., 2017(3), 459–464. https://doi.org/10.1002/ejoc.201601497
Pokhodylo, N. T., Shyyka, O. Y., Obushak, M. D. (2018). Convenient synthetic path to ethyl 1-aryl-5-formyl-1H-1,2,3-triazole-4-carboxylates and 1-aryl-1,5-dihydro-4H-[1,2,3]triazolo[4,5-d]pyridazin-4-ones. Chem. Нeterocycl. Сompd., 54, 773–779.
https://doi.org/10.1007/s10593-018-2348-1
Pokhodylo, N. T., Shyyka, O. Y., Goreshnik, E. A., Obushak, M. D. (2020). 4-Phosphonated or 4-free 1,2,3-triazoles: What controls the Dimroth reaction of arylazides with 2-oxopropylphosphonates? ChemistrySelect, 5(1), 260–264. https://doi.org/10.1002/slct.201904688
Pokhodylo, N. T., Teslenko, Y. O., Matiychuk, V. S., Obushak, M. D. (2009). Synthesis of 2,1-benzisoxazoles by nucleophilic substitution of hydrogen in nitroarenes activated by the azole ring. Synthesis, 2009(16), 2741–2748. https://doi.org/10.1055/s-0029-1216875
Desselle, M. R., Neale, R., Hansford, K. A., Zuegg, J., Elliott, A. G., Cooper, M. A., Blaskovich, M. A. (2017). Institutional profile: Community for Open Antimicrobial Drug Discovery–crowdsourcing new antibiotics and antifungals. Future Sci OA., 3(2), FSO171. https://doi.org/10.4155/fsoa-2016-0093
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Oles Honchar Dnipro National University
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).