SYNTHESIS OF NOVEL 1-(3-PHENYLBENZO[C]ISOXAZOL-5-YL)-1H-1,2,3-TRIAZOLE-4-CARBOXAMIDES AND THEIR ANTIBACTERIAL AND ANTIFUNGAL ACTIVITIES

Authors

DOI:

https://doi.org/10.15421/jchemtech.v32i2.297699

Keywords:

azide; benzo[c]isoxazoles; 1H-1,2,3-triazole-4-carboxamides; antimicrobial.

Abstract

Novel 1-(3-arylbenzo[c]isoxazol-5-yl)-1H-1,2,3-triazole-4-carboxamides were designed, synthesizing and evaluated for antimicrobial activity toward five key ESKAPE pathogenic bacteria, one Gram‐positive bacteria methicillin‐resistant Staphylococcus aureus (ATCC 43300), four Gram‐negative bacteria, Escherichia coli (ATCC 25922), Klebsiella pneumonia (ATCC 700603), Acinetobacter baumannii (ATCC 19606), and Pseudomonas aeruginosa (ATCC 27853) and antifungal activity towards two pathogenic fungal strains Candida albicans (ATCC 90028) and Cryptococcus neoformans var. Grubii (H99; ATCC 208821). The target compounds were obtained in a convenient synthetic path including consequent Dimroth cyclocondensation of 4-nitrophenyl azide with β-ketoesters, vicarious nucleophilic substitution in nitroaryl fragments and amidation of 1,2,3-triazole-4-carboxylic acid motif. In this way, a mini combinatorial library of 24 compounds was obtained with good overall yields. Five compounds, 7a, 7b, 7i, 7t and 7u, reduced the growth of microorganisms by approximately 20 %. Compounds 7b, 7i, and 7u demonstrated the inhibitory activity towards Staphylococcus aureus. In contrary 7a and 7t towards Cryptococcus neoformans. The data obtained will be used for further design and scaffold optimization.

References

Yuan, K., Gong, Y. M., Liu, L., Sun, Y. K., Tian, S. S., Wang, Y. J., Zhong, Y., Zhang, A. Y., Su, S. Z., Liu, X. X., Zhang, Y. X. (2021). Prevalence of posttraumatic stress disorder after infectious disease pandemics in the twenty-first century, including COVID-19: a meta-analysis and systematic review. Mol. Psychiatry, 26(9), 4982–4998.

https://doi.org/10.1038/s41380-021-01036-x

Fiest, K. M., Parsons Leigh, J., Krewulak, K. D., Plotnikoff, K. M., Kemp, L. G., Ng-Kamstra, J., Stelfox, H. T. (2021). Experiences and management of physician psychological symptoms during infectious disease outbreaks: a rapid review. BMC psychiatry, 21(1), 1–14.

https://doi.org/10.1186/s12888-021-03090-9

Alsuwailem, A. A. S., Saudagar, A. K. J. (2021). Impact of infectious diseases on international business: A comprehensive literature review. J. Inter. Math., 24(1), 197–226. https://doi.org/10.1080/09720502.2020.1833461

Pianalto, K. M., Alspaugh, J. A. (2016). New horizons in antifungal therapy. J. Fungi., 2(4), 26.

https://doi.org/10.3390/jof2040026

Denning, D., Jugessur, J. (2016). Hidden crisis: how 150 people die every hour from fungal infection while the world turns a blind eye. Global Action Fund Fungal Infect, 1–3. (accessed on 29 January 2024); Available online: https://www.gaffi.org/wp-content/uploads/GAFFI-Leaflet-June-2016-DWD-hidden-crisis.pdf

Houšť, J., Spížek, J., Havlíček, V. (2020). Antifungal drugs. Metabolites, 10(3), 106.

https://doi.org/10.3390/metabo10030106

Bongomin, F., Gago, S., Oladele, R.O., Denning, D.W. (2017). Global and multi-national prevalence of fungal diseases–estimate precision. J. Fungi., 3(4), 57. https://doi.org/10.3390/jof3040057

Mo, C. Y., Culyba, M. J., Selwood, T., Kubiak, J. M., Hostetler, Z. M., Jurewicz, A. J., Keller, P. M., Pope, A. J., Quinn, A., Schneck, J., Widdowson, K. L., Kohli, R. M. (2017). Inhibitors of LexA autoproteolysis and the bacterial SOS response discovered by an academic–industry partnership. ACS Infect. Dis., 4(3), 349–359.

https://doi.org/10.1021/acsinfecdis.7b00122

Mo, C. Y., Manning, S. A., Roggiani, M., Culyba, M. J., Samuels, A. N., Sniegowski, P. D., Goulian, M., Kohli, R. M. (2016). Systematically altering bacterial SOS activity under stress reveals therapeutic strategies for potentiating antibiotics. MSphere, 1(4), e00163–16. https://doi.org/10.1128/mSphere.00163-16

Mo, C. Y. (2016). Make antibiotics great again: Combating drug resistance by targeting Lexa, a regulator of bacterial evolution. Publicly Accessible Penn Dissertations, 2489.

https://repository.upenn.edu/edissertations/2489

Jadhav, R. P., Raundal, H. N., Patil, A. A., Bobade, V. D. (2017). Synthesis and biological evaluation of a series of 1,4-disubstituted 1,2,3-triazole derivatives as possible antimicrobial agents. J. Saudi Chem. Soc., 21(2), 152–159. https://doi.org/10.1016/j.jscs.2015.03.003

Sall, C., Ayé, M., Bottzeck, O., Praud, A., Blache, Y. (2018). Towards smart biocide-free anti-biofilm strategies: Click-based synthesis of cinnamide analogues as anti-biofilm compounds against marine bacteria. BioOrg. Med. Chem. Lett., 28(2), 155–159.

https://doi.org/10.1016/j.bmcl.2017.11.039

Wang, Z. J., Gao, Y., Hou, Y. L., Zhang, C., Yu, S. J., Bian, Q., Li, Z.M., Zhao, W. G. (2014). Design, synthesis, and fungicidal evaluation of a series of novel 5-methyl-1H-1, 2,3-trizole-4-carboxyl amide and ester analogues. Eur. J. Med. Chem., 86, 87–94.

https://doi.org/10.1016/j.ejmech.2014.08.029

Pokhodylo, N., Manko, N., Finiuk, N., Klyuchivska, O., Matiychuk, V., Obushak, M., Stoika, R. (2021). Primary discovery of 1-aryl-5-substituted-1H-1,2,3-triazole-4-carboxamides as promising antimicrobial agents. J. Mol. Struct., 1246, 131146.

https://doi.org/10.1016/j.molstruc.2021.131146

Prasad, B., Nayak, V. L., Srikanth, P. S., Baig, M. F., Reddy, N. S., Babu, K. S., Kamal, A. (2019). Synthesis and biological evaluation of 1-benzyl-N-(2-(phenylamino)pyridin-3-yl)-1H-1,2,3-triazole-4-carboxamides as antimitotic agents. BioOrg. Chem., 83, 535–548. https://doi.org/10.1016/j.bioorg.2018.11.002

Reddy, V. G., Bonam, S. R., Reddy, T. S., Akunuri, R., Naidu, V. G. M., Nayak, V. L., Bhargava, S. K., Kumar, H. S., Srihari, P., Kamal, A. (2018). 4β-amidotriazole linked podophyllotoxin congeners: DNA topoisomerase-IIα inhibition and potential anticancer agents for prostate cancer. Eur. J. Med. Chem., 144, 595–611.

https://doi.org/10.1016/j.ejmech.2017.12.050

Elamari, H., Meganem, F., Herscovici, J., Girard, C. (2011). Chemoselective preparation of disymmetric bistriazoles from bisalkynes. Tetrahedron Lett., 52(6), 658–660. https://doi.org/10.1016/j.tetlet.2010.11.141

Elamari, H., Slimi, R., Chabot, G. G., Quentin, L., Scherman, D., Girard, C. (2013). Synthesis and in vitro evaluation of potential anticancer activity of mono-and bis-1,2,3-triazole derivatives of bis-alkynes. Eur. J. Med. Chem., 60, 360–364.

https://doi.org/10.1016/j.ejmech.2012.12.025

Duan, H., Arora, D., Li, Y., Setiadi, H., Xu, D., Lim, H. Y., Wang, W. (2016). Identification of 1,2,3-triazole derivatives that protect pancreatic β cells against endoplasmic reticulum stress-mediated dysfunction and death through the inhibition of C/EBP-homologous protein expression. BioOrg. Med. Chem., 24(12), 2621–2630. https://doi.org/10.1016/j.bmc.2016.03.057

Taddei, M., Ferrini, S., Giannotti, L., Corsi, M., Manetti, F., Giannini, G., Vesci, L., Milazzo, F. M., Alloatti D., Guglielmi, M. B., Castorina,. M., Cervoni, M. L., Barbarino, M., Foderà, R., Carollo, V., Pisano, C., Armaroli, S., Cabri, W. (2014). Synthesis and evaluation of new Hsp90 inhibitors based on a 1,4,5-trisubstituted 1,2,3-triazole scaffold. J. Med. Chem., 57(6), 2258–2274.

https://doi.org/10.1021/jm401536b

Pokhodylo, N., Shyyka, O., Matiychuk, V. (2014). Synthesis and anticancer activity evaluation of new 1,2,3-triazole-4-carboxamide derivatives. Med. Chem. Res., 23, 2426–2438.

https://doi.org/10.1007/s00044-013-0841-8

Pokhodylo, N. T., Shyyka, O. Ya., Finiuk, N. S. (2019) Anticancer activity evaluation of thieno[3,2-e][1,2,3]triazolo[1,5-a]pyrimidines and thieno[2,3-e][1,2,3]triazolo[1,5-a]pyrimidine derivatives, Biopolym. Cell. 35, 321–330.

http://dx.doi.org/10.7124/bc.000A0F

Wang, L., Xu, S., Liu, X., Chen, X., Xiong, H., Hou, S., Zou, W., Tang, Q., Zheng, P., Zhu, W. (2018). Discovery of thinopyrimidine-triazole conjugates as c-Met targeting and apoptosis inducing agents. BioOrg. Chem., 77, 370–380. https://doi.org/10.1016/j.bioorg.2018.01.037

Pokhodylo, N., Finiuk, N., Klyuchivska, O., Тupychak, M. A., Matiychuk, V., Goreshnik, E., Stoika, R. (2022). Novel N-(4-thiocyanatophenyl)-1H-1,2,3-triazole-4-carboxamides exhibit selective cytotoxic activity at nanomolar doses towards human leukemic T-cells. Eur. J. Med, Chem., 241, 114633. https://doi.org/10.1016/j.ejmech.2022.114633

Pokhodylo, N. T., Shyyka, O. Y., Matiychuk, V. S., Obushak, M. D., Pavlyuk, V. V. (2017). A novel base-solvent controlled chemoselective azide attack on an ester group versus keto in alkyl 3-substituted 3-oxopropanoates: mechanistic insights. ChemistrySelect, 2(21), 5871–5876.

https://doi.org/10.1002/slct.201700577

Bräse, S., Gil, C., Knepper, K., Zimmermann, V. (2005). Organic azides: an exploding diversity of a unique class of compounds. Angew. Chem. Int. Ed., 44(33), 5188–5240. https://doi.org/10.1002/anie.200400657

Pokhodylo, N. T., Matiychuk, V. S., Obushak, M. D. (2010). Synthesis of isothiocoumarin derivatives. Chem. Heterocycl. Compd., 46, 140–145.

https://doi.org/10.1007/s10593-010-0484-3

Jalani, H. B., Karagöz, A. Ç., Tsogoeva, S. B. (2017). Synthesis of substituted 1,2,3-triazoles via metal-free click cycloaddition reactions and alternative cyclization methods. Synthesis, 49(01), 29–41.

https://doi.org/10.1055/s-0036-1588904

John, J., Thomas, J., Dehaen, W. (2015). Organocatalytic routes toward substituted 1,2,3-triazoles. Chem. Commun., 51(54), 10797–10806.

https://doi.org/10.1039/C5CC02319J

Ramachary, D. B., Gujral, J., Peraka, S., Reddy, G. S. (2017). Triazabicyclodecene as an organocatalyst for the regiospecific synthesis of 1,4,5-trisubstituted N-vinyl-1,2,3-triazoles. Eur. J. Org. Chem., 2017(3), 459–464. https://doi.org/10.1002/ejoc.201601497

Pokhodylo, N. T., Shyyka, O. Y., Obushak, M. D. (2018). Convenient synthetic path to ethyl 1-aryl-5-formyl-1H-1,2,3-triazole-4-carboxylates and 1-aryl-1,5-dihydro-4H-[1,2,3]triazolo[4,5-d]pyridazin-4-ones. Chem. Нeterocycl. Сompd., 54, 773–779.

https://doi.org/10.1007/s10593-018-2348-1

Pokhodylo, N. T., Shyyka, O. Y., Goreshnik, E. A., Obushak, M. D. (2020). 4-Phosphonated or 4-free 1,2,3-triazoles: What controls the Dimroth reaction of arylazides with 2-oxopropylphosphonates? ChemistrySelect, 5(1), 260–264. https://doi.org/10.1002/slct.201904688

Pokhodylo, N. T., Teslenko, Y. O., Matiychuk, V. S., Obushak, M. D. (2009). Synthesis of 2,1-benzisoxazoles by nucleophilic substitution of hydrogen in nitroarenes activated by the azole ring. Synthesis, 2009(16), 2741–2748. https://doi.org/10.1055/s-0029-1216875

Desselle, M. R., Neale, R., Hansford, K. A., Zuegg, J., Elliott, A. G., Cooper, M. A., Blaskovich, M. A. (2017). Institutional profile: Community for Open Antimicrobial Drug Discovery–crowdsourcing new antibiotics and antifungals. Future Sci OA., 3(2), FSO171. https://doi.org/10.4155/fsoa-2016-0093

Downloads

Published

2024-07-10