Maritime Transport; Shipping; Marine diesel engines; Marine fuels; Exhaust gases; Combustion processes; Nitrogen oxides; Sulfur compounds; Emission characteristics; Shipboard Energy Systems.


This study explores strategies to enhance the efficiency of marine technical equipment through the adoption of low-sulfur marine fuels. The investigation incorporates a comprehensive analysis, encompassing enthalpy change calculations and thermal efficiency estimates at various temperature differentials. These calculations shed light on the impact of the specific heat capacity of low sulfur marine fuels, a crucial factor in understanding combustion characteristics. Furthermore, provides an assessment of the efficiency of converting heat to mechanical energy, offering valuable insights for optimizing equipment performance. The outcomes of this research contribute to a broader strategy aimed at bolstering the environmental sustainability and efficiency of marine propulsion systems. By scrutinizing the utilization of low sulfur marine fuels, the study seeks to inform decision-making processes by pinpointing temperature ranges that maximize efficiency. The findings also highlight areas with potential for improvement in the performance of marine diesel engines. This holistic approach is integral to fostering advancements in both environmental responsibility and operational effectiveness within the maritime industry.


Ship & Bunker News Team. (2016). Ship Owners Have "Little Incentive" to Invest in Scrubbers Prior to 2020. Ship & Bunker News. Retrieved from http://shipandbunker.com/news/world/201918/

Julian, М. (2000). MARPOL 73/78: the International Convention for the Prevention of Pollution from Ships, Maritime Studies, (113), 16–23, doi: 10.1080/07266472.2000.10878605

Getting the Chemistry Right. (2023). Bunkerspot. https://www.bunkerspot.com/features-alternative-fuels/item/getting-the-chemistry-right-2

MAN Diesel & Turbo. (2014). Guidelines for Operation on Fuels with less than 0.1% Sulphur. Denmark: MAN, pp. 1-24.

Anh Tran, T. (2020). Some Methods to Prevent the Wear of Piston-Cylinder When Using Low Sulphur Fuel Oil (LSFO) for All Ships Sailing on Emission Control Areas (ECAs). IntechOpen.

doi: 10.5772/intechopen.89400

Matejski, M., Szczepaniak, T. (2012). Relations of distribution of the low sulphur shipping fuels in region of the baltic sea in the bunkering boat-ship supply. Advances in Science and Technology Research Journal, 6. doi: 10.5604/20804075.1025129.

Faturachman, D., Djaeni, A., Arifin, M. D., Fridolini. (2020). Tug Boats Fuel Efficiency with use of Flow meter Web Based Monitoring and Control System in P.T. X. IOP Conference Series: Earth and Environmental Science, 557. doi:10.1088/1755-1315/557/1/012062.

Inozemceva, A., Locaitienė, V., Dubra, A. (2021). Management tools for implementation and monitoring of requirements for enforcement of reducing sulphur oxides on ships: Latvia and Lithuania cases. Scientific Bulletin of Naval Academy, XXIV. 225–239.

Rapkos, N., Weigelt, A., Beecken, J. Ntziachristos, L. (2023). Method to identify fuel sulphur content (FSC) violations of ongoing vessels using CFD modelling. Atmospheric Environment, 309. 119912. doi: 10.1016/j.atmosenv.2023.119912.

Van Roy, W., Merveille, J.-B., Nieuwenhove, A., Scheldeman, K., Maes, F. (2024). Policy recommendations for international regulations addressing air pollution from ships. Marine Policy, 159. doi:105913. 10.1016/j.marpol.2023.105913.

Bekdaş, A., Kaya, C., Kökkülünk, G. (2022). Comprehensive economic analyses in terms of maritime Sulphur 2020 regulation. Ships and Offshore Structures, 18. 1–12. doi:10.1080/17445302.2022.2075648.

Wang, Sh., Peng, Ch. (2019). Model and analysis of the effect of China’s potential domestic emission control area with 0.1% sulphur limit. Maritime Business Review, 4(3), 298-309. doi:10.1108/MABR-03-2019-0012.

Liu, X. (2022). The supervision and multi-sectoral guarantee mechanism of the global marine sulphur limit-assessment from Chinese shipping industry. Frontiers in Marine Science, 9. doi:10.3389/fmars.2022.1028388.

Singh, A., Shanthakumar, S. (2023). Operational concerns from compliance of IMO2020 sulphur limit through VLSFO. Paliva, 14. 170–180. doi: 10.35933/paliva.2022.04.02.

Ubowska, A., Dobrzyńska, R. (2020). Low-Sulphur Marine Fuels—Panacea or a New Threat? In book: Sustainable Design and Manufacturing 2020. Smart Innovation, Systems and Technologies. Springer, Singapore. doi: 10.1007/978-981-15-8131-1_37.

Manoj, A., Joseph, A., Kumar, S. (2023). Biofuels in Marine Industry – A Way of Reducing Carbon Emissions. International Conference on Energy Options For Cleaner Environment At: Kochi, Kerala, 1-8.

Tian, Y., He, W., Peng, C., Ma, G. (2018). Assessment of the Costs and Environmental Benefits of Converting to the Low-Sulphur Oil for Berthing Vessels in the Pearl River Estuary Bay Area. Research of Environmental Sciences, 31, 1322–1328. doi: 10.13198/j.issn.1001-6929.2018.04.01.

Cuong, N., Hung, P. (2020). An analysis of available solutions for commercial vessels to comply with IMO strategy on low sulphur. Journal of International Maritime Safety, Environmental Affairs, and Shipping, 4, 1–8. 10.1080/25725084.2020.1784080.

Wu, X., Huang, Z. (2023). Estimating the costs and external benefits of reducing shipping-induced air pollution: a case study of Xiamen Harbour, China. Environment, Development and Sustainability. doi: 10.1007/s10668-023-03840-7.

Tan, Zh., Zeng, X., Shao, Sh., Chen, J., Wang, H. (2022). Scrubber installation and green fuel for inland river ships with non-identical streamflow. Transportation Research Part E: Logistics and Transportation Review, 161, 102677. doi: 10.1016/j.tre.2022.102677.

Anastasopolos, A., Sofowote, U., Hopke, P., Rouleau, M., Shin, T., Dheri, A., Peng, H., Kulka, R., Gibson, M., Farah, P.-M., Sundar, N. (2021). Air quality in Canadian port cities after regulation of low-sulphur marine fuel in the North American Emissions Control Area. Science of The Total Environment, 791. 147949. doi: 10.1016/j.scitotenv.2021.147949.

Alam, M., Mohd Z., Noor, I., Husain, A. (2019). Review of sulphur emission from international shipping - Effects and regulatory global abatement steps. International Journal of Mechanical Engineering and Technology, 10. 924–933.

Burgel, A. (2007). Air pollution from ships: Recent developments. WMU Journal of Maritime Affairs, 6, 217–224. doi: 10.1007/BF03195116.

Nduagu, E., Umeozor, E., Sow, A., Millington, D. (2018). An Economic Assessment of the International Maritime Organization Sulphur Regulations on Markets for Canadian Crude Oil. Report number: Study, 175.

Kostova, I., Nikiforov, V., Pirovsky, C., Ilieva, G. (2023). NOx reduction system selection and energy efficiency impact evaluation for ships sailing in restricted areas. IOP Conference Series: Earth and Environmental Science, 1128, 012026.

doi: 10.1088/1755-1315/1128/1/012026.

Buffaloe, G., Lack, D., Williams, E., Coffman, D., Hayden, K., Lerner, B., Li, S.-M., Nuaaman, I., Onasch, T., Quinn, P., Cappa, C. (2014). Black carbon emissions from in-use ships: A California regional assessment. Atmospheric Chemistry and Physics, 14. 10.5194/acp-14-1881-2014.

Delgado, Nelson & Martínez de Osés, Francesc Xavier. (2022). Open-Loop Exhaust-Gas Cleaning System: Analysis of Effects Produced on Barcelona Port Water pH. Water, 14. 1146. 10.3390/w14071146.

Livaniou, S., Papadopoulos, G. (2022). Liquefied Natural Gas (LNG) as a Transitional Choice Replacing Marine Conventional Fuels (Heavy Fuel Oil/Marine Diesel Oil), towards the Era of Decarbonisation. Sustainability, 14. 16364. 10.3390/su142416364.

Bilgili, L. (2021). Life Cycle Comparison of Marine Fuels for IMO 2020 Sulphur Cap. Science of The Total Environment, 774. 145719. doi:10.1016/j.scitotenv.2021.145719.

Furman, M. (2019). Responsibility of the Shipowner for the Pollution of the Marine Environment by Oil Products Due to Intentional Drain. Lex Portus, (2), 70–79. doi: 10.26886/2524-101X.2.2019.5

Siekiera J. (2019). Legal consequences of ocean change in the south pacific - outline of the problem. Lex Portus, 2019 (5), pp. 7 - 20. DOI: 10.26886/2524-101X.5.2019.1

Melnyk, O., Onishchenko, O., Onyshchenko, S., Voloshyn, A., Kalinichenko, Y., Rossomakha, O., Naleva, G., Rossomakha, O. (2022). Autonomous Ships Concept and Mathematical Models Application in their Steering Process Control. TransNav, 16(3), 553–559. doi: 10.12716/1001.16.03.18

Melnyk, O., Onyshchenko, S., Onishchenko, O., Lohinov O., Ocheretna, V. (2023). Integral Approach to Vulnerability Assessment of Ship’s Critical Equipment and Systems. Transactions on Maritime Science, 12 (1). doi: 10.7225/toms.v12.n01.002

Melnyk, O., Onishchenko, O., Onyshchenko, S., Golikov, V., Sapiha, V., Shcherbina, O., Andrievska, V. (2022). Study of Environmental Efficiency of Ship Operation in Terms of Freight Transportation Effectiveness Provision. TransNav, 16(4), 723–729. doi: 10.12716/1001.16.04.14

Melnyk, O., Onyshchenko, S., Onishchenko, O., Shumylo O., Voloshyn, A., Koskina, Y., Volianska, Y. (2022). Review of Ship Information Security Risks and Safety of Maritime Transportation Issues. Trans. Nav, 16(4), 717–722. doi: 10.12716/1001.16.04.13

Melnyk, O., Onyshchenko, S. (2022). Navigational safety assessment based on Markov-Model approach. Pomorstvo, 36(2), 328–337. doi: 10.31217/p.36.2.16

Melnyk, O., Onyshchenko, S. (2022). Ensuring Safety of Navigation in the Aspect of Reducing Environmental Impact. Lecture Notes in Networks and Systems, 463 LNNS, 95–103. doi: 10.1007/978-3-031-03877-8_9

Alla, B., Natalia, B., Sergey, B., Svitlana, O. (2020). Modelling of Creation Organisational Energy-Entropy. International Scientific and Technical Conference on Computer Sciences and Information Technologies, 2, 9321997, 141–145. doi:10.1109/CSIT49958.2020.9321997

Bushuyev, S., Bushuieva, V., Onyshchenko, S., Bondar, A. (2021). Modeling the dynamics of information panic in society. COVID-19 case. CEUR Workshop Proceedings, 2864, 400–408.

Volyanskaya, Y., Volyanskiy, S., Volkov, A., Onishchenko, O. (2017). Determining energy-efficient operation modes of the propulsion electrical motor of an autonomous swimming apparatus. Eastern-European Journal of Enterprise Technologies, 6(8–90), 11–16. doi: 10.15587/1729-4061.2017.118984

Budashko, V., Nikolskyi, V., Onishchenko, O., Khniunin, S. (2016). Decision support system's concept for design of combined propulsion complexes. Eastern-European Journal of Enterprise Technologies, 3(8-81), 10–21. doi: 10.15587/1729-4061.2016.72543

Minchev, D.S., Gogorenko, O., Varbanets, R.A., Moshentsev, Y.L., Píštěk, V., Kučera, P., Shumylo, O.M., Kyrnats, V.I. (2023). Prediction of centrifugal compressor instabilities for internal combustion engines operating cycle simulation. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 237(2-3), 572–584. doi: 10.1177/09544070221075419

Minchev, D., Varbanets, R., Shumylo, O., Zalozh, V., Aleksandrovska, N., Bratchenko, P., Truong, T.H. (2023). Digital Twin Test-Bench Performance for Marine Diesel Engine Applications. Polish Maritime Research, 30(4), pp. 81 – 91. doi: 10.2478/pomr-2023-0061

Tarasenko, T., Zalozh, V., Varbanets, R., Minchev, D. (2021). Considerations regarding reducing Danube navigation emissions. Scientific Bulletin of Naval Academy, 24(1), 174–183. doi: 10.21279/1454-864X-21-I1-021

Zou, B., Rockne, K.J., Vitousek, S., Noruzoliaee, M. (2018). Transportation infrastructure and ecosystem resilience to climate change in the great lakes. Journal of Maritime Research, 15(1), 24–32.

Ponce, T., Ressurreição, A., Calado, H., Serrão, R. (2015). Innovative attitudes towards property rights on natural resources in remote maritime regions. Journal of Maritime Research, 12(3), 13–36.

Martínez de Osés, F. X., González, J.C.M. (2020). Analysis and measurement of SOx, CO2, PM and NOx emissions in port auxiliary vessels. Journal of Maritime Research, 17(1), 75–85.

Kovalets, I.V., Bespalov, V.P., Maistrenko, S.Ya., Udovenko, O.I. (2022). The use of environmental decision support systems for modeling of atmospheric pollution following the chemical accidents. System Research and Information Technologies, (3), 57–70. doi: 10.20535/SRIT.2308-8893.2022.3.04

Trofimchuk, O.N., Zelensky, K. Kh., Nastenko, I.A. (2021). Modeling of a temperature field for extruder body. System Research and Information Technologies, (2), 130–139. doi: 10.20535/SRIT.2308-8893.2021.2.10

Ivokhin, E.V., Adzhubey, L.T., Naumenko, Y.A., Makhno, M.F. (2021). On one approach to using of fractional analysis for hybrid modeling of information distribution processes. System Research and Information Technologies, (4), 128–137. doi: 10.20535/SRIT.2308-8893.2021.4.10

Rudenko, S., Shakhov, A., Lapkina, I., Shumylo, O., Malaksiano, M., Horchynskyi, I. (2022). Multicriteria Approach to Determining the Optimal Composition of Technical Means in the Design of Sea Grain Terminals. Transactions on Maritime Science, 11(1), 28–44. doi: 10.7225/toms.v11.n01.003

Lapkina, I., Malaksiano, M., Savchenko, Y. (2020). Design and optimization of maritime transport infrastructure projects based on simulation modeling methods. CEUR Workshop Proceedings, 2565, 36–45.

Shumylo, O., Yarovenko, V., Malaksiano, M., Melnyk, O. (2023). Comprehensive Assessment of Hull Geometry Influence of a Modernized Ship on Maneuvering Performance and Propulsion System Parameters. Pomorstvo, 37(2), 314–325. doi: 10.31217/p.37.2.13

Gorobchenko, O., Fomin, O., Gritsuk, I., Saravas, V., Grytsuk, Y., Bulgakov, M., Volodarets, M., Zinchenko, D. (2018). Intelligent Locomotive Decision Support System Structure Development and Operation Quality Assessment. 2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems (IEPS), 239–243. doi: 10.1109/IEPS.2018.8559487.

Sagin, S., Kuropyatnyk, O., Sagin, A., Tkachenko, I., Fomin, O., Píštěk, V., Kučera, P. (2022). Ensuring the Environmental Friendliness of Drillships during Their Operation in Special Ecological Regions of Northern Europe. Journal of Marine Science and Engineering, 10 (9), 1331. doi: 10.3390/jmse10091331.

Zaharchuk, V., Gritsuk, I.V., Zaharchuk, O., Golovan, A., Korobka, S., Pylypiuk, L., Rudnichenko, N. (2018). The choice of a rational type of fuel for technological vehicles. SAE Technical Papers. doi: 10.4271/2018-01-1759.

Vychuzhanin, V.V., Rudnichenko, N.R., Sagova, Z., Smieszek, M., Cherniavskyi, V.V., Golovan, A.I., Volodarets, M.V. (2020). Analysis and structuring diagnostic large volume data of technical condition of complex equipment in transport. IOP Conference Series: Materials Science and Engineering, 776 (1), 012049. doi: 10.1088/1757-899X/776/1/012049.

Onishchenko, O., Golikov, V., Melnyk, O., Onyshchenko, S., Obertiur, K. (2022). Technical and operational measures to reduce greenhouse gas emissions and improve the environmental and energy efficiency of ships. Scientific Journal of Silesian University of Technology. Series Transport, 116, 223–235. doi: 10.20858/sjsutst.2022.116.14.






Industrial gases. Chemical engineering