SYNTHESIS N-ALKOXY-1-(DIMETHOXYPHOSPHORYLOXY)BENZIMIDATES FROM N-ALKOXY-N-CHLOROBENZAMIDES

Authors

DOI:

https://doi.org/10.15421/jchemtech.v32i3.298733

Keywords:

N-alkoxy-N-chlorobenzamides, trimethyl phosphite, N-alkoxy-1-(dimethoxyphosphoryloxy)benzimidates, synthesis, structure, XRD study, N–O-migration of dimethoxyphosphoryl group

Abstract

Aim. To synthesize of N-alkoxy-1-(dimethoxyphosphoryloxy)benzimidates from the interaction of N-alkoxy-N-chlorobenzamides with trimethylphosphite. To investigate N-alkoxy-1-(dimethoxyphosphoryloxy)-benzimidates structure using the XRD study. Methods. Mass spectrometry, 1H, 31P and 13C NMR spectroscopy, XRD study. Results. This study explores the reaction of N-alkoxy-N-chlorobenzamides with trimethylphosphite in ether resulting in the formation N-alkoxy-1-(dimethoxyphosphoryloxy)benzimidates. The obtained benzimidates are identified as the products of the nucleophilic substitution at nitrogen followed by an unusual N–O-migration of dimethoxyphosphoryl group. This reaction presents an original synthetic pathway to the N-alkoxy-1-phosphoryloxy imidates. In this research the possibility of the N-alkoxy-N-chlorobenzamides interaction with P-nucleophiles has been proved. The structure of N-alkoxy-1-(dimethoxyphosphoryloxy)benzimidates has been confirmed by the 1H, 31P and 13C NMR spectra, mass spectra and XRD study. The XRD study of N-methoxy-1-(dimethoxyphosphoryloxy)-4-nitrobenzimidate has demonstrated that this compound is Z-isomer, and 4-nitrophenyl moiety and N-methoxy group are in a trans position towards to the C=N double bond. The coplanarity of the aromatic ring and the π-system of the C=N double bond is evident from the XRD data. Conclusions. As the result of our study the feasibility of N-alkoxy-1-(phosphoryloxy)benzimidates formation through the interaction of N-alkoxy-N-chlorobenzamides with trialkylphosphites has been elucidated. This outcome holds significant value for a better understanding of the synthetic importance of N-alkoxy-N-chlorobenzamides. The structural elucidation of Z-N-alkoxy-1-(dimethoxyphosphoryloxy)benzimidates has been done. A novel kind of the intramolecular N–O-migration of the phosphoryl group has established.

References

Gerdes, R.G., Glover, S.A., ten Have, J.F., Rowbottom, C.A. (1989). N-Acetoxy-N-alkoxyamides – a New Class of Nitrenium Ion Precursors Which are Mutagenic. Tetrahedron Lett., 30(20), 2649−26521. https://doi.org/10.1016/S0040-4039(00)99089-0

Glover, S.A. (1998). Anomeric Amides – Structure, Properties and Reactivity. Tetrahedron, 54(26), 7229–7271. https://doi.org/10.1016/S0040-4020(98)00197-5

Gillson, A.-M., Glover, S.A., Tucker, D.J., Turner, P. (2003). Crystal structures and properties of mutagenic N-acyloxy-N-alkoxyamides – “most pyramidal” acyclic amides. Org. Biomol. Chem., 1(19), 3430−3437. https://doi.org/10.1039/B306098P

Glover, S.A. (2009). N-Heteroatom-substituted hydroxamic esters. in The Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids, EdsRappoport, Z., Liebman, J. F., John Wiley and Sons, New York. PATAI’S Chemistry of Funcional Groups. v.1. https://doi.org/10.1002/9780470682531.pat0470

Glover, S.A., Rosser, A.A., (2018). Heteroatom Substitution at Amide Nitrogen – Resonance Reduction and HERON Reactions of Anomeric Amides. Molecules, 23(11), 2834. https://doi.org/10.3390/molecules23112834

Glover, S.A., Rosser, A.A. (2022). Modification of Amidic Resonance Through Heteroatom Substitution at Nitrogen: Anomeric Amides. Amide Bond Activation. Ed. M. Szostak, John Wiley and Sons, New York. https://doi.org/10.1002/9783527830251.ch2

Buccigross, J.M., Glover, S.A., Hammond, G.P. (1995). Decomposition of N,N’-Diacyl-N,N’-dialkoxyhydrazines Revisited. Aust. J. Chem. 48(2), 353−361. https://doi.org/10.1071/CH9950353

Glover, S.A., Mo, G. (2002). Hindered ester formation by SN2 azidation of N-acetoxy-N-alkoxyamides and N-alkoxy-N-chloroamides – novel application of HERON rearrangement. J. Chem. Soc., Perkin Trans, 2(10), 1728–1739. https://doi.org/10.1039/B111250N

Glover, S.A., Hammond, G.P., Bonin, A.M. (1998). A Comparison of the Reactivity and mutagenicity of N-(Benzoyloxy)-N-(benzyloxy)benzamides. J. Org. Chem., 63(26), 9684−9689. https://doi.org/10.1021/jo980863z

Cavanagh, K.L., Glover, S.A., Price, H.L., Schumacher, R.R. (2009). SN2 Substitution reactions at the Amide Nitrogen in the Anomeric Mutagens, N-Acyloxy-N-alkoxyamides. Aust. J. Chem., 62(7), 700–710. https://doi.org/10.1071/CH09166

Glover, S.A.; White, J.M.; Rosser, A.A.; Digianantonio, K.M. (2011). Structure of N,N-Dialkoxyamides: Pyramidal Anomeric Amides with Low Amidicity, J. Org. Chem., 76, 9757−9763. https://doi.org/10.1021/jo201856u

Shtamburg, V.G., Tsygankov, A.V., Shishkin, O.V., Zubatyuk, R.I., Uspensky, B.V., Shtamburg, V.V., Mazepa, A.V., Kostyanovsky, R.G. (2012). The properties and structure of N-chloro-N-methoxy-4-nitrobenzamide. Mendeleev Commun., 22(3), 164–166. https://doi.org/10.1016/j.mencom.2012.05.019

Shishkin, O.V., Zubatyuk, R.I., Shtamburg, V.G., Tsygankov, A.V., Klots, E.A., Mazepa, A.V., Kostyanovsky, R.G. (2006). Pyramidal Amide Nitrogen in N-Acyloxy-N-alkoxyureas and N-Acyloxy-N-alkoxycarbamates. Mendeleev Commun., 16 (4), 222−223. https://doi.org/10.1070/MC2006v016n04ABEH002195

Shtamburg, V.G., Shishkin, O.V., Zubatyuk, R.I., Kravchenko, S.V., Shtamburg, V.V., Distanov, V.B., Tsуgankov, A.V., Kostyanovsky, R.G. (2007). Synthesis, structure and properties of N-alkoxy-N-(1-pyridinium)urea salts, N-alkoxy-N-acyloxyureas and N,N-dialkoxyureas. Mendeleev Commun., 17(3), 178–180.https://doi.org/10.1016/j.mencom.2007.05.016

Shishkin, O.V., Shtamburg, V.G., Zubatyuk, R.I., Olefir, D.A., Tsygankov, A.V., Prosyanik, A.V., Mazepa, A.V., Kostyanovsky, R.G. (2009). Chiral Ureas with Two Electronegative Substituens at 1-N and Unusual Case of Coexisting a Pyramidal and Almost Planar 1-N in The Same Crystal. Chirality, 21(7), 642–647. https://doi.org/10.1002/chir.20668

Shtamburg, V.G., Tsygankov, A.V., Gerasimenko, M.V. ,Shishkin, O.V., Zubatyuk, R.I., Mazepa, A.V., Kostyanovsky, R.G. (2011). New approach to N,N-dialkoxy-N'-arylureas and N,N-dialkoxycarbamates. Mendeleev Commun., 21(12), 50−32. https://doi.org/10.1016/j.mencom.2011.01.021

Shtamburg, V.G., Shtamburg, V.V.,Tsygankov, A.V., Anishchenko, A.A., Zubatyuk, R.I. Shishkina, S.V., Mazepa, A.V., Klots, E.A. (2016). Synthesis and Structure of New N-Alkoxy-N-(1-pyridinium)urea Chlorides. Eur. Chem. Bull., 5(4), 142–146. doi: 10.17628/ECB.2016.5.142

Shtamburg, V.G., Shtamburg, V.V., Kravchenko, S.V., Mazepa, A.V., Anishchenko, A.A.,Posokhov, E.A. (2017). A New Synthesis of N-Alkoxyaminopyridinium Salts. Bulletin of National University “KhPI”. Series: New solutions in modern technology, (7), 211−218. doi:10.20998/2413-4295.2017.07.30

Shtamburg, V.G., Shishkin, O.V., Zubatyuk, R.I., Shtamburg V.V., Tsygankov, A.V., Mazepa, A.V., Kadorkina, G.K., Kostyanovsky, R.G. (2013). Synthesis and structure of N-alkoxyhydrazines and N-alkoxy-N’,N’,N-trialkylhydrazinium salts. Mendeleev Commun., 23(5), 289−291.https://doi.org./10.1016/j.men.com.2013.09.018

Shtamburg, V.G., Anishchenko, A.A., Shishkina, S.V., Konovalova, I.S., Shtamburg, V.V., Mazepa, A.V., Kravchenko, S.V. (2017). 1-(N-Ethoxycarbonyl-N-isopropyloxy)amino-4-dimethylaminopyridinium Chloride. Synthesis and Structure. Eur. Chem. Bull., 6 (10) (2017) 470–474. doi: 10.17628/ecb.2017.6.470-474

Shtamburg, V.G., Shishkina, S.V., Shtamburg, V.V., Mazepa, A.V., Kadorkina, G.K., Kostyanovsky, R.G. (2016). 1-Alkoxyamino-4-dimethylaminopyridinium salts: synthesis and structure. Mendeleev Commun., 26(2), 169−171. https://doi.org/10.1016/j.mencom.2016.03.030

Shtamburg, V.G., Shtamburg, V.V., Klots, E.A., Anishchenko, A.A., Mazepa, A.V., Kravchenko, S.V. (2020). Nucleophilic Substitution in N-Alkoxy-N-chlorocarbamates as a Way to N-Alkoxy-N’,N’,N’-trimethylhydrazinium chlorides. Eur. Chem. Bull., 9(1), 28−32. http://dx.doi.org/10.17628/ecb.2020.9.28-32

Shtamburg, V.G., Klots, E.A., Shtamburg, V.V., Anishchenko, A.A., Shishkina, S.V., Mazepa, A.V. (2023). Nucleophilic substitution at nitrogen atom. N-Alkoxy-N-(dimethoxyphosphoryl)ureas, synthesis and structure. J. Mol. Structure, 1277, 134865. https://doi.org/10.1016/j.molstruc.2022.134865

Sheldrick, G.M. (2008). A short history of SHELX. ActaCryst., Sect. A., A 64, 112−122. https://doi.org/10.1107/S0108767307043930

Plapinger, R.E., Wagner-Jauregg, T. (1953). A Nitrogen-to-Oxygen Phosphoryl Migration: Preparation of dl-Serinephosphoric and Threoninephosphoric Acid. J. Am. Chem. Soc., 75(22), 5757–5758. https://doi.org/10.1021/ja01118a524

Gao, X., Deng, H., Tang, G., Liu, Y., Xu, P., Zhao, Y. (2011). Intermolecular Phosphoryl Transfer of N-Phosphoryl Amino Acids. Eur. J. Org. Chem., 2011(17), 3220−3228. https://doi.org/10.1002/ejoc.201100234

Deng, X., Wang, Y., Liu, J.-B., Wan, C., Luo, N. (2022). Synthesis of N-methoxy-phosphoryloxyimidates through a copper-catalyzed cross-dehydrogenative coupling of N-methoxyamides with phosphites. Tetrahedron Lett. 105, 154049. https://ssrn.com/abstract=4150600

Zimin, M.G., Fomakhin, E.V., Sadykov, A.R., Smirnov, V.N., Pudovik, A.N. (1985). Synthesis and rearrangements of phosphorylated derivatives of phenyl isohydroxamic acid. Journal of General Chemistry of the USSR– Zhurnal Obshchei Khimii, 55(8), 1526−1531.

Downloads

Published

2024-10-20