INVESTIGATION OF THE BASIC LAWS OF THE KINETICS OF BIOCATALYTIC HYDROLYSIS OF VEGETABLE OIL
DOI:
https://doi.org/10.15421/jchemtech.v32i1.298927Keywords:
hydrolysis, lipase, biocatalysis, kinetics, thermodynamicsAbstract
Since the day a person is born, nutrition plays a key part in maintaining his or her health by shaping the longevity potential. Different kinds of nutrients, ingested through food and transformed into structural elements of cells through complex biochemical processes, provide the body with building blocks and energy, determining health, physical, and mental activity, as well as life expectancy. Among such substances are polyunsaturated fatty acids, known to exert an active effect on blood plasma lipids. In particular, they reduce excess low-density cholesterol and significantly reduce the risk of developing and aggravating diseases caused by atherosclerosis. The biocatalytic hydrolysis of vegetable oils is a promising process for the production of polyunsaturated fatty acids. A comprehensive study of the kinetics and thermodynamics of the above process was carried out, which allowed us to develop a relevant mathematical model and identify the basic laws of kinetics. The rate constants of the direct and reverse reactions running in the reaction systems, as well as the equilibrium constants of each of them, were determined. The data obtained were used to compute the thermodynamic parameters and draw conclusions about the contribution of each reaction to the overall process. The results of this investigation will be a scientific basis for the development of an industrial biocatalytic technology for the hydrolysis of vegetable oils to produce polyunsaturated fatty acids, highly demanded in the food industry.
References
Benucci, I., Caso, M.C., Bavaro, T., Masci, S., Keršienė, M., Esti, M. (2020). Prolyl endopeptidase from Aspergillus niger immobilized on a food-grade carrier for the production of gluten-reduced beer. Food Control, 110, 106987. https://doi.org/10.1016/j.foodcont.2019.106987
Xie, J., Zhang, Y., Simpson, B. Food enzymes immobilization: novel carriers, techniques and applications (2022). Curr. Opin. Food Sci., 43, 27–35. https://doi.org/10.1016/j.cofs.2021.09.004
Monsalve-Atencio, R., Sanchez-Soto, K., Chica, J., Camaño Echavarría, J.A., Vega-Castro, O. (2022). Interaction between phospholipase and transglutaminase in the production of semi-soft fresh cheese and its effect on the yield, composition, microstructure and textural properties. LWT, 154, 112722. https://doi.org/10.1016/j.lwt.2021.112722
Sutay Kocabaş, D., Lyne, J., Ustunol, Z. (2022). Hydrolytic enzymes in the dairy industry: Applications, market and future perspectives. Trends Food Sci. Technol., 119, 467–475. https://doi.org/10.1016/j.tifs.2021.12.013
Kaushal, J., Khatri, M., Singh, G., Arya, S.K. (2021). A multifaceted enzyme conspicuous in fruit juice clarification: An elaborate review on xylanase. Int. J. Biol. Macromol., 193, 1350–1361. https://doi.org/10.1016/j.ijbiomac.2021.10.194
Dal Magro, L., Pessoa, J.P.S., Klein, M.P., Fernandez-Lafuente, R., Rodrigues, R.C. (2021) Enzymatic clarification of orange juice in continuous bed reactors: Fluidized-bed versus packed-bed reactor. Catal. Today, 362, 184–191. https://doi.org/10.1016/j.cattod.2020.02.003
Taheri-Kafrani, A., Kharazmi, S., Nasrollahzadeh, M., Soozanipour, A., Ejeian, F., Etedali, P., Mansouri-Tehrani, H.-A., Razmjou, A., Yek, S.M.-G., Varma, R.S. (2021). Recent developments in enzyme immobilization technology for high-throughput processing in food industries. Crit. Rev. Food Sci. Nutr., 61(19), 3160–3196. https://doi.org/10.1080/10408398.2020.1793726
Bilal, M., Iqbal, H.M.N. (2020). State-of-the-art strategies and applied perspectives of enzyme biocatalysis in food sector – current status and future trends. Crit. Rev. Food Sci. Nutr., 60(12), 2052–2066. https://doi.org/10.1080/10408398.2019.1627284
Tkachenko, N.A., Nekrasov, P.O., Vikul, S.I. (2016). Optimization of formulation composition of health whey–based beverage. East.-Eur. J. Enterp. Technol., 79(1/10), 49–57 (in Ukrainian). https://doi.org/10.15587/1729-4061.2016.59695
de Souza, T.S.P., Kawaguti, H.Y. (2021). Cellulases, Hemicellulases, and Pectinases: Applications in the Food and Beverage Industry. Food Bioprocess Technol., 14(8), 1446–1477. https://doi.org/10.1007/s11947-021-02678-z
Zorn, K., Oroz-Guinea, I., Brundiek, H., Bornscheuer, U.T. (2016). Engineering and application of enzymes for lipid modification, an update. Prog. Lipid Res., 63, 153–164. https://doi.org/10.1016/j.plipres.2016.06.001
Serrano-Arnaldos, M., Bastida, J., Máximo, F., Ortega-Requena, S., Montiel, C. (2018). One-step solvent-free production of a spermaceti analogue using commercial immobilized lipases. ChemistrySelect, 3(2), 748–752. https://doi.org/10.1002/slct.201702332
Xiaoyang, S., Shaojun, T., Lifen, Z., Jianchun, X. (2019). Effect of phospholipase A1 -catalyzed degumming on oryzanol, tocopherols, and tocotrienols of dewaxed rice bran oil. J. Chem., 2019, 1608750. https://doi.org/10.1155/2019/1608750
Filho, D. G., Silva, A. G., Guidini, C. Z. (2019). Lipases: sources, immobilization methods, and industrial applications. Appl. Microbiol. Biotechnol., 103(18), 7399–7423. https://doi.org/10.1007/s00253-019-10027-6
Sarmah, N., Revathi, D., Sheelu, G., Yamuna Rani, K., Sridhar, S., Mehtab, V., Sumana, C. (2018). Recent advances on sources and industrial applications of lipases. Biotechnol. Prog., 34(1), 5–28. https://doi.org/10.1002/btpr.2581
Javed, S., Azeem, F., Hussain, S., Rasul, I., Siddique, M. H., Riaz, M., Afzal, M., Kouser, A., Nadeem, H. (2018). Bacterial lipases: A review on purification and characterization. Prog. Biophys. Mol. Biol., 132, 23–34. https://doi.org/10.1016/j.pbiomolbio.2017.07.014
Arana-Peña, S., Carballares, D., Berenguer-Murcia, Á., Alcántara, A.R., Rodrigues, R.C., Fernandez-Lafuente, R. (2020). One pot use of combilipases for full modification of oils and fats: Multifunctional and heterogeneous substrates Catalysts, 10 (6), art. no. 605. https://doi.org/10.3390/catal10060605
Ai H., Lee Y.-Y., Xie X., Tan C.P., Ming Lai O., Li A., Wang Y., Zhang Z. (2023). Structured lipids produced from palm-olein oil by interesterification: A controllable lipase-catalyzed approach in a solvent-free system. Food Chemistry, 412, 135558. https://doi.org/10.1016/j.foodchem.2023.135558
Saikia, K., Rathankumar, A.K., Vaithyanathan, V.K., Cabana, H., Vaidyanathan, V.K. (2021). Preparation of highly diffusible porous cross-linked lipase B from Candida antarctica conjugates: Advances in mass transfer and application in transesterification of 5 Hydroxymethylfurfural. Int. J. Biol. Macromol., 170, 583–592. https://doi.org/10.1016/j.ijbiomac.2020.12.178
Zhou, H., Zhang, Z., Lee, W.J., Xie, X., Li, A., Wang, Y. (2021). Acyl migration occurrence of palm olein during interesterification catalyzed by sn-1,3 specific lipase. LWT, 142, 111023 . https://doi.org/10.1016/j.lwt.2021.111023
Akil, E., Pereira, A.D.S., El-Bacha, T., Amaral, P.F.F., Torres, A.G. (2020) Efficient production of bioactive structured lipids by fast acidolysis catalyzed by Yarrowia lipolytica lipase, free and immobilized in chitosan-alginate beads, in solvent-free medium. Int. J. Biol. Macromol., 163, 910–918. https://doi.org/10.1016/j.ijbiomac.2020.06.282
Ramos, M.D., Miranda, L.P., Fernandez-Lafuente, R., Kopp, W., Tardioli, P.W. (2019). Improving the yields and reaction rate in the ethanolysis of soybean oil by using mixtures of lipase CLEAs. Molecules, 24(23), 4392. https://doi.org/10.3390/molecules24234392
Pedro, K.C.N.R., da Silva, J.V.V., Cipolatti, E.P., Manoel, E.A., Campisano, I.S.P., Henriques, C.A., Langone, M.A.P. (2023). Adsorption of lipases on porous silica-based materials for esterification in a solvent-free system. 3 Biotech, 13(11), 380. https://doi.org/10.1007/s13205-023-03801-x
Martins, P.A., Trobo-Maseda, L., Lima, F.A., de Morais Júnior, W.G., De Marco, J.L., Salum, T.F.C., Guisán, J.M. (2022) Omega-3 production by fish oil hydrolysis using a lipase from Burkholderia gladioli BRM58833 immobilized and stabilized by post-immobilization techniques. Biochem. Biophys. Rep., 29, 101193. https://doi.org/10.1016/j.bbrep.2021.101193
Kavadia, M.R., Yadav, M.G., Vadgama, R.N., Odaneth, A.A., Lali, A.M. (2019). Production of trans-free interesterified fat using indigenously immobilized lipase. Prep. Biochem. Biotechnol., 49(5), 444–452. https://doi.org/10.1080/10826068.2019.1566142
Nekrasov, P.O., Gudz, O.M., Nekrasov, O.P., Kishchenko, V.A., Holubets, O.V. (2019). [Fatty systems with reduced content of trans-fatty acids]. Voprosy khimii i khimicheskoi technologii – Issues of Chemistry and Chemical Technology, (3), 132–138 (in Ukrainian). https://doi.org/10.32434/0321-4095-2019-124-3-132-138
Nekrasov, P.O., Gudz, O.M., Nekrasov, O.P., Berezka, T.O. (2020). Optimizing the parameters of the production process of fat systems with a minimum content of trans-isomers. Voprosy khimii i khimicheskoi technologii – Issues of Chemistry and Chemical Technology, (3), 128–133. https://doi.org/10.32434/0321-4095-2020-130-3-128-133
Nekrasov, P.O., Berezka, T.O., Nekrasov, O.P., Gudz, O.M., Rudneva, S.I., Molchenko, S.M. (2022). Study of biocatalytic synthesis of phytosterol esters as formulation components of nutritional systems for health purposes. Journal of Chemistry and Technologies, 30(3), 404–409. https://doi.org/10.15421/jchemtech.v30i3.265174
Nekrasov, P.O., Piven, O.M., Nekrasov, O.P., Gudz, O.M., Kryvonis, N.O. (2018). Kinetics and thermodynamics of biocatalytic glycerolysis of triacylglycerols enriched with omega-3 polyunsaturated fatty acids. Voprosy khimii i khimicheskoi technologii – Issues of Chemistry and Chemical Technology, (5), 31–36. doi: 10.32434/0321-4095-2021-137-4-89-95
Ahrari, F., Mohammadi, M. (2024). Combined cross-linking of Rhizomucor miehei lipase and Candida antarctica lipase B for the effective enrichment of omega-3 fatty acids in fish oil. Int. J. Biol. Macromol., 260, 129362. https://doi.org/10.1016/j.ijbiomac.2024.129362
Nekrasov, P.O., Berezka, T.O., Nekrasov, O.P., Gudz, O.M., Molchenko, S.M., Rudneva, S.I. (2023). Optimization of the parameters of biocatalytic hydrolysis of vegetable oil using the methods of neural networks and genetic algorithms. Journal of Chemistry and Technologies, 31(1), 140–146. https://doi.org/10.15421/jchemtech.v31i1.274704
Chandra, P., Enespa, Singh, R., Arora, P.K. (2020) Microbial lipases and their industrial applications: A comprehensive review. Microb. Cell Fact., 19(1), 169. https://doi.org/10.1186/s12934-020-01428-8
Mehta, A., Guleria, S., Sharma, R., Gupta, R. (2020) The lipases and their applications with emphasis on food industry. Microb. Biotechnol. Food Health, 143–164. https://doi.org/10.1016/B978-0-12-819813-1.00006-2
Watson, R.R., Demeester, F. (2016). Handbook of lipids in human function: fatty acids. USA: Academic Press and AOCS Press.
International Organization for Standardization. (2021). Determination of water. Karl Fischer method (General method). Geneva, Switzerland: International Organization for Standardization.
Firestone, D. (2020). Official methods and recommended practices of the American Oil Chemist’s Society, 7th ed. – USA: American Oil Chemists’ Society (AOCS).
Schmitz, K.S. (2016). Physical Chemistry: Concepts and Theory. USA: Elsevier.
Benucci, I., Caso, M.C., Bavaro, T., Masci, S., Keršienė, M., Esti, M. (2020). Prolyl endopeptidase from Aspergillus niger immobilized on a food-grade carrier for the production of gluten-reduced beer. Food Control, 110, 106987. https://doi.org/10.1016/j.foodcont.2019.106987
Xie, J., Zhang, Y., Simpson, B. Food enzymes immobilization: novel carriers, techniques and applications (2022). Curr. Opin. Food Sci., 43, 27–35. https://doi.org/10.1016/j.cofs.2021.09.004
Monsalve-Atencio, R., Sanchez-Soto, K., Chica, J., Camaño Echavarría, J.A., Vega-Castro, O. (2022). Interaction between phospholipase and transglutaminase in the production of semi-soft fresh cheese and its effect on the yield, composition, microstructure and textural properties. LWT, 154, 112722. https://doi.org/10.1016/j.lwt.2021.112722
Sutay Kocabaş, D., Lyne, J., Ustunol, Z. (2022). Hydrolytic enzymes in the dairy industry: Applications, market and future perspectives. Trends Food Sci. Technol., 119, 467–475. https://doi.org/10.1016/j.tifs.2021.12.013
Kaushal, J., Khatri, M., Singh, G., Arya, S.K. (2021). A multifaceted enzyme conspicuous in fruit juice clarification: An elaborate review on xylanase. Int. J. Biol. Macromol., 193, 1350–1361. https://doi.org/10.1016/j.ijbiomac.2021.10.194
Dal Magro, L., Pessoa, J.P.S., Klein, M.P., Fernandez-Lafuente, R., Rodrigues, R.C. (2021) Enzymatic clarification of orange juice in continuous bed reactors: Fluidized-bed versus packed-bed reactor. Catal. Today, 362, 184–191. https://doi.org/10.1016/j.cattod.2020.02.003
Taheri-Kafrani, A., Kharazmi, S., Nasrollahzadeh, M., Soozanipour, A., Ejeian, F., Etedali, P., Mansouri-Tehrani, H.-A., Razmjou, A., Yek, S.M.-G., Varma, R.S. (2021). Recent developments in enzyme immobilization technology for high-throughput processing in food industries. Crit. Rev. Food Sci. Nutr., 61(19), 3160–3196. https://doi.org/10.1080/10408398.2020.1793726
Bilal, M., Iqbal, H.M.N. (2020). State-of-the-art strategies and applied perspectives of enzyme biocatalysis in food sector – current status and future trends. Crit. Rev. Food Sci. Nutr., 60(12), 2052–2066. https://doi.org/10.1080/10408398.2019.1627284
Tkachenko, N.A., Nekrasov, P.O., Vikul, S.I. (2016). Optimization of formulation composition of health whey–based beverage. East.-Eur. J. Enterp. Technol., 79(1/10), 49–57 (in Ukrainian). https://doi.org/10.15587/1729-4061.2016.59695
de Souza, T.S.P., Kawaguti, H.Y. (2021). Cellulases, Hemicellulases, and Pectinases: Applications in the Food and Beverage Industry. Food Bioprocess Technol., 14(8), 1446–1477. https://doi.org/10.1007/s11947-021-02678-z
Zorn, K., Oroz-Guinea, I., Brundiek, H., Bornscheuer, U.T. (2016). Engineering and application of enzymes for lipid modification, an update. Prog. Lipid Res., 63, 153–164. https://doi.org/10.1016/j.plipres.2016.06.001
Serrano-Arnaldos, M., Bastida, J., Máximo, F., Ortega-Requena, S., Montiel, C. (2018). One-step solvent-free production of a spermaceti analogue using commercial immobilized lipases. ChemistrySelect, 3(2), 748–752. https://doi.org/10.1002/slct.201702332
Xiaoyang, S., Shaojun, T., Lifen, Z., Jianchun, X. (2019). Effect of phospholipase A1 -catalyzed degumming on oryzanol, tocopherols, and tocotrienols of dewaxed rice bran oil. J. Chem., 2019, 1608750. https://doi.org/10.1155/2019/1608750
Filho, D. G., Silva, A. G., Guidini, C. Z. (2019). Lipases: sources, immobilization methods, and industrial applications. Appl. Microbiol. Biotechnol., 103(18), 7399–7423. https://doi.org/10.1007/s00253-019-10027-6
Sarmah, N., Revathi, D., Sheelu, G., Yamuna Rani, K., Sridhar, S., Mehtab, V., Sumana, C. (2018). Recent advances on sources and industrial applications of lipases. Biotechnol. Prog., 34(1), 5–28. https://doi.org/10.1002/btpr.2581
Javed, S., Azeem, F., Hussain, S., Rasul, I., Siddique, M. H., Riaz, M., Afzal, M., Kouser, A., Nadeem, H. (2018). Bacterial lipases: A review on purification and characterization. Prog. Biophys. Mol. Biol., 132, 23–34. https://doi.org/10.1016/j.pbiomolbio.2017.07.014
Arana-Peña, S., Carballares, D., Berenguer-Murcia, Á., Alcántara, A.R., Rodrigues, R.C., Fernandez-Lafuente, R. (2020). One pot use of combilipases for full modification of oils and fats: Multifunctional and heterogeneous substrates Catalysts, 10 (6), art. no. 605. https://doi.org/10.3390/catal10060605
Ai H., Lee Y.-Y., Xie X., Tan C.P., Ming Lai O., Li A., Wang Y., Zhang Z. (2023). Structured lipids produced from palm-olein oil by interesterification: A controllable lipase-catalyzed approach in a solvent-free system. Food Chemistry, 412, 135558. https://doi.org/10.1016/j.foodchem.2023.135558
Saikia, K., Rathankumar, A.K., Vaithyanathan, V.K., Cabana, H., Vaidyanathan, V.K. (2021). Preparation of highly diffusible porous cross-linked lipase B from Candida antarctica conjugates: Advances in mass transfer and application in transesterification of 5 Hydroxymethylfurfural. Int. J. Biol. Macromol., 170, 583–592. https://doi.org/10.1016/j.ijbiomac.2020.12.178
Zhou, H., Zhang, Z., Lee, W.J., Xie, X., Li, A., Wang, Y. (2021). Acyl migration occurrence of palm olein during interesterification catalyzed by sn-1,3 specific lipase. LWT, 142, 111023 . https://doi.org/10.1016/j.lwt.2021.111023
Akil, E., Pereira, A.D.S., El-Bacha, T., Amaral, P.F.F., Torres, A.G. (2020) Efficient production of bioactive structured lipids by fast acidolysis catalyzed by Yarrowia lipolytica lipase, free and immobilized in chitosan-alginate beads, in solvent-free medium. Int. J. Biol. Macromol., 163, 910–918. https://doi.org/10.1016/j.ijbiomac.2020.06.282
Ramos, M.D., Miranda, L.P., Fernandez-Lafuente, R., Kopp, W., Tardioli, P.W. (2019). Improving the yields and reaction rate in the ethanolysis of soybean oil by using mixtures of lipase CLEAs. Molecules, 24(23), 4392. https://doi.org/10.3390/molecules24234392
Pedro, K.C.N.R., da Silva, J.V.V., Cipolatti, E.P., Manoel, E.A., Campisano, I.S.P., Henriques, C.A., Langone, M.A.P. (2023). Adsorption of lipases on porous silica-based materials for esterification in a solvent-free system. 3 Biotech, 13(11), 380. https://doi.org/10.1007/s13205-023-03801-x
Martins, P.A., Trobo-Maseda, L., Lima, F.A., de Morais Júnior, W.G., De Marco, J.L., Salum, T.F.C., Guisán, J.M. (2022) Omega-3 production by fish oil hydrolysis using a lipase from Burkholderia gladioli BRM58833 immobilized and stabilized by post-immobilization techniques. Biochem. Biophys. Rep., 29, 101193. https://doi.org/10.1016/j.bbrep.2021.101193
Kavadia, M.R., Yadav, M.G., Vadgama, R.N., Odaneth, A.A., Lali, A.M. (2019). Production of trans-free interesterified fat using indigenously immobilized lipase. Prep. Biochem. Biotechnol., 49(5), 444–452. https://doi.org/10.1080/10826068.2019.1566142
Nekrasov, P.O., Gudz, O.M., Nekrasov, O.P., Kishchenko, V.A., Holubets, O.V. (2019). [Fatty systems with reduced content of trans-fatty acids]. Voprosy khimii i khimicheskoi technologii – Issues of Chemistry and Chemical Technology, (3), 132–138 (in Ukrainian). https://doi.org/10.32434/0321-4095-2019-124-3-132-138
Nekrasov, P.O., Gudz, O.M., Nekrasov, O.P., Berezka, T.O. (2020). Optimizing the parameters of the production process of fat systems with a minimum content of trans-isomers. Voprosy khimii i khimicheskoi technologii – Issues of Chemistry and Chemical Technology, (3), 128–133. https://doi.org/10.32434/0321-4095-2020-130-3-128-133
Nekrasov, P.O., Berezka, T.O., Nekrasov, O.P., Gudz, O.M., Rudneva, S.I., Molchenko, S.M. (2022). Study of biocatalytic synthesis of phytosterol esters as formulation components of nutritional systems for health purposes. Journal of Chemistry and Technologies, 30(3), 404–409. https://doi.org/10.15421/jchemtech.v30i3.265174
Nekrasov, P.O., Piven, O.M., Nekrasov, O.P., Gudz, O.M., Kryvonis, N.O. (2018). Kinetics and thermodynamics of biocatalytic glycerolysis of triacylglycerols enriched with omega-3 polyunsaturated fatty acids. Voprosy khimii i khimicheskoi technologii – Issues of Chemistry and Chemical Technology, (5), 31–36. doi: 10.32434/0321-4095-2021-137-4-89-95
Ahrari, F., Mohammadi, M. (2024). Combined cross-linking of Rhizomucor miehei lipase and Candida antarctica lipase B for the effective enrichment of omega-3 fatty acids in fish oil. Int. J. Biol. Macromol., 260, 129362. https://doi.org/10.1016/j.ijbiomac.2024.129362
Nekrasov, P.O., Berezka, T.O., Nekrasov, O.P., Gudz, O.M., Molchenko, S.M., Rudneva, S.I. (2023). Optimization of the parameters of biocatalytic hydrolysis of vegetable oil using the methods of neural networks and genetic algorithms. Journal of Chemistry and Technologies, 31(1), 140–146. https://doi.org/10.15421/jchemtech.v31i1.274704
Chandra, P., Enespa, Singh, R., Arora, P.K. (2020) Microbial lipases and their industrial applications: A comprehensive review. Microb. Cell Fact., 19(1), 169. https://doi.org/10.1186/s12934-020-01428-8
Mehta, A., Guleria, S., Sharma, R., Gupta, R. (2020) The lipases and their applications with emphasis on food industry. Microb. Biotechnol. Food Health, 143–164. https://doi.org/10.1016/B978-0-12-819813-1.00006-2
Watson, R.R., Demeester, F. (2016). Handbook of lipids in human function: fatty acids. USA: Academic Press and AOCS Press.
International Organization for Standardization. (2021). Determination of water. Karl Fischer method (General method). Geneva, Switzerland: International Organization for Standardization.
Firestone, D. (2020). Official methods and recommended practices of the American Oil Chemist’s Society, 7th ed. – USA: American Oil Chemists’ Society (AOCS).
Schmitz, K.S. (2016). Physical Chemistry: Concepts and Theory. USA: Elsevier.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Oles Honchar Dnipro National University
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).