INVESTIGATION OF THE BASIC LAWS OF THE KINETICS OF BIOCATALYTIC HYDROLYSIS OF VEGETABLE OIL

Authors

DOI:

https://doi.org/10.15421/jchemtech.v32i1.298927

Keywords:

hydrolysis, lipase, biocatalysis, kinetics, thermodynamics

Abstract

Since the day a person is born, nutrition plays a key part in maintaining his or her health by shaping the longevity potential. Different kinds of nutrients, ingested through food and transformed into structural elements of cells through complex biochemical processes, provide the body with building blocks and energy, determining health, physical, and mental activity, as well as life expectancy. Among such substances are polyunsaturated fatty acids, known to exert an active effect on blood plasma lipids. In particular, they reduce excess low-density cholesterol and significantly reduce the risk of developing and aggravating diseases caused by atherosclerosis. The biocatalytic hydrolysis of vegetable oils is a promising process for the production of polyunsaturated fatty acids. A comprehensive study of the kinetics and thermodynamics of the above process was carried out, which allowed us to develop a relevant mathematical model and identify the basic laws of kinetics. The rate constants of the direct and reverse reactions running in the reaction systems, as well as the equilibrium constants of each of them, were determined. The data obtained were used to compute the thermodynamic parameters and draw conclusions about the contribution of each reaction to the overall process. The results of this investigation will be a scientific basis for the development of an industrial biocatalytic technology for the hydrolysis of vegetable oils to produce polyunsaturated fatty acids, highly demanded in the food industry.

References

Benucci, I., Caso, M.C., Bavaro, T., Masci, S., Keršienė, M., Esti, M. (2020). Prolyl endopeptidase from Aspergillus niger immobilized on a food-grade carrier for the production of gluten-reduced beer. Food Control, 110, 106987. https://doi.org/10.1016/j.foodcont.2019.106987

Xie, J., Zhang, Y., Simpson, B. Food enzymes immobilization: novel carriers, techniques and applications (2022). Curr. Opin. Food Sci., 43, 27–35. https://doi.org/10.1016/j.cofs.2021.09.004

Monsalve-Atencio, R., Sanchez-Soto, K., Chica, J., Camaño Echavarría, J.A., Vega-Castro, O. (2022). Interaction between phospholipase and transglutaminase in the production of semi-soft fresh cheese and its effect on the yield, composition, microstructure and textural properties. LWT, 154, 112722. https://doi.org/10.1016/j.lwt.2021.112722

Sutay Kocabaş, D., Lyne, J., Ustunol, Z. (2022). Hydrolytic enzymes in the dairy industry: Applications, market and future perspectives. Trends Food Sci. Technol., 119, 467–475. https://doi.org/10.1016/j.tifs.2021.12.013

Kaushal, J., Khatri, M., Singh, G., Arya, S.K. (2021). A multifaceted enzyme conspicuous in fruit juice clarification: An elaborate review on xylanase. Int. J. Biol. Macromol., 193, 1350–1361. https://doi.org/10.1016/j.ijbiomac.2021.10.194

Dal Magro, L., Pessoa, J.P.S., Klein, M.P., Fernandez-Lafuente, R., Rodrigues, R.C. (2021) Enzymatic clarification of orange juice in continuous bed reactors: Fluidized-bed versus packed-bed reactor. Catal. Today, 362, 184–191. https://doi.org/10.1016/j.cattod.2020.02.003

Taheri-Kafrani, A., Kharazmi, S., Nasrollahzadeh, M., Soozanipour, A., Ejeian, F., Etedali, P., Mansouri-Tehrani, H.-A., Razmjou, A., Yek, S.M.-G., Varma, R.S. (2021). Recent developments in enzyme immobilization technology for high-throughput processing in food industries. Crit. Rev. Food Sci. Nutr., 61(19), 3160–3196. https://doi.org/10.1080/10408398.2020.1793726

Bilal, M., Iqbal, H.M.N. (2020). State-of-the-art strategies and applied perspectives of enzyme biocatalysis in food sector – current status and future trends. Crit. Rev. Food Sci. Nutr., 60(12), 2052–2066. https://doi.org/10.1080/10408398.2019.1627284

Tkachenko, N.A., Nekrasov, P.O., Vikul, S.I. (2016). Optimization of formulation composition of health whey–based beverage. East.-Eur. J. Enterp. Technol., 79(1/10), 49–57 (in Ukrainian). https://doi.org/10.15587/1729-4061.2016.59695

de Souza, T.S.P., Kawaguti, H.Y. (2021). Cellulases, Hemicellulases, and Pectinases: Applications in the Food and Beverage Industry. Food Bioprocess Technol., 14(8), 1446–1477. https://doi.org/10.1007/s11947-021-02678-z

Zorn, K., Oroz-Guinea, I., Brundiek, H., Bornscheuer, U.T. (2016). Engineering and application of enzymes for lipid modification, an update. Prog. Lipid Res., 63, 153–164. https://doi.org/10.1016/j.plipres.2016.06.001

Serrano-Arnaldos, M., Bastida, J., Máximo, F., Ortega-Requena, S., Montiel, C. (2018). One-step solvent-free production of a spermaceti analogue using commercial immobilized lipases. ChemistrySelect, 3(2), 748–752. https://doi.org/10.1002/slct.201702332

Xiaoyang, S., Shaojun, T., Lifen, Z., Jianchun, X. (2019). Effect of phospholipase A1 -catalyzed degumming on oryzanol, tocopherols, and tocotrienols of dewaxed rice bran oil. J. Chem., 2019, 1608750. https://doi.org/10.1155/2019/1608750

Filho, D. G., Silva, A. G., Guidini, C. Z. (2019). Lipases: sources, immobilization methods, and industrial applications. Appl. Microbiol. Biotechnol., 103(18), 7399–7423. https://doi.org/10.1007/s00253-019-10027-6

Sarmah, N., Revathi, D., Sheelu, G., Yamuna Rani, K., Sridhar, S., Mehtab, V., Sumana, C. (2018). Recent advances on sources and industrial applications of lipases. Biotechnol. Prog., 34(1), 5–28. https://doi.org/10.1002/btpr.2581

Javed, S., Azeem, F., Hussain, S., Rasul, I., Siddique, M. H., Riaz, M., Afzal, M., Kouser, A., Nadeem, H. (2018). Bacterial lipases: A review on purification and characterization. Prog. Biophys. Mol. Biol., 132, 23–34. https://doi.org/10.1016/j.pbiomolbio.2017.07.014

Arana-Peña, S., Carballares, D., Berenguer-Murcia, Á., Alcántara, A.R., Rodrigues, R.C., Fernandez-Lafuente, R. (2020). One pot use of combilipases for full modification of oils and fats: Multifunctional and heterogeneous substrates Catalysts, 10 (6), art. no. 605. https://doi.org/10.3390/catal10060605

Ai H., Lee Y.-Y., Xie X., Tan C.P., Ming Lai O., Li A., Wang Y., Zhang Z. (2023). Structured lipids produced from palm-olein oil by interesterification: A controllable lipase-catalyzed approach in a solvent-free system. Food Chemistry, 412, 135558. https://doi.org/10.1016/j.foodchem.2023.135558

Saikia, K., Rathankumar, A.K., Vaithyanathan, V.K., Cabana, H., Vaidyanathan, V.K. (2021). Preparation of highly diffusible porous cross-linked lipase B from Candida antarctica conjugates: Advances in mass transfer and application in transesterification of 5 Hydroxymethylfurfural. Int. J. Biol. Macromol., 170, 583–592. https://doi.org/10.1016/j.ijbiomac.2020.12.178

Zhou, H., Zhang, Z., Lee, W.J., Xie, X., Li, A., Wang, Y. (2021). Acyl migration occurrence of palm olein during interesterification catalyzed by sn-1,3 specific lipase. LWT, 142, 111023 . https://doi.org/10.1016/j.lwt.2021.111023

Akil, E., Pereira, A.D.S., El-Bacha, T., Amaral, P.F.F., Torres, A.G. (2020) Efficient production of bioactive structured lipids by fast acidolysis catalyzed by Yarrowia lipolytica lipase, free and immobilized in chitosan-alginate beads, in solvent-free medium. Int. J. Biol. Macromol., 163, 910–918. https://doi.org/10.1016/j.ijbiomac.2020.06.282

Ramos, M.D., Miranda, L.P., Fernandez-Lafuente, R., Kopp, W., Tardioli, P.W. (2019). Improving the yields and reaction rate in the ethanolysis of soybean oil by using mixtures of lipase CLEAs. Molecules, 24(23), 4392. https://doi.org/10.3390/molecules24234392

Pedro, K.C.N.R., da Silva, J.V.V., Cipolatti, E.P., Manoel, E.A., Campisano, I.S.P., Henriques, C.A., Langone, M.A.P. (2023). Adsorption of lipases on porous silica-based materials for esterification in a solvent-free system. 3 Biotech, 13(11), 380. https://doi.org/10.1007/s13205-023-03801-x

Martins, P.A., Trobo-Maseda, L., Lima, F.A., de Morais Júnior, W.G., De Marco, J.L., Salum, T.F.C., Guisán, J.M. (2022) Omega-3 production by fish oil hydrolysis using a lipase from Burkholderia gladioli BRM58833 immobilized and stabilized by post-immobilization techniques. Biochem. Biophys. Rep., 29, 101193. https://doi.org/10.1016/j.bbrep.2021.101193

Kavadia, M.R., Yadav, M.G., Vadgama, R.N., Odaneth, A.A., Lali, A.M. (2019). Production of trans-free interesterified fat using indigenously immobilized lipase. Prep. Biochem. Biotechnol., 49(5), 444–452. https://doi.org/10.1080/10826068.2019.1566142

Nekrasov, P.O., Gudz, O.M., Nekrasov, O.P., Kishchenko, V.A., Holubets, O.V. (2019). [Fatty systems with reduced content of trans-fatty acids]. Voprosy khimii i khimicheskoi technologii – Issues of Chemistry and Chemical Technology, (3), 132–138 (in Ukrainian). https://doi.org/10.32434/0321-4095-2019-124-3-132-138

Nekrasov, P.O., Gudz, O.M., Nekrasov, O.P., Berezka, T.O. (2020). Optimizing the parameters of the production process of fat systems with a minimum content of trans-isomers. Voprosy khimii i khimicheskoi technologii – Issues of Chemistry and Chemical Technology, (3), 128–133. https://doi.org/10.32434/0321-4095-2020-130-3-128-133

Nekrasov, P.O., Berezka, T.O., Nekrasov, O.P., Gudz, O.M., Rudneva, S.I., Molchenko, S.M. (2022). Study of biocatalytic synthesis of phytosterol esters as formulation components of nutritional systems for health purposes. Journal of Chemistry and Technologies, 30(3), 404–409. https://doi.org/10.15421/jchemtech.v30i3.265174

Nekrasov, P.O., Piven, O.M., Nekrasov, O.P., Gudz, O.M., Kryvonis, N.O. (2018). Kinetics and thermodynamics of biocatalytic glycerolysis of triacylglycerols enriched with omega-3 polyunsaturated fatty acids. Voprosy khimii i khimicheskoi technologii – Issues of Chemistry and Chemical Technology, (5), 31–36. doi: 10.32434/0321-4095-2021-137-4-89-95

Ahrari, F., Mohammadi, M. (2024). Combined cross-linking of Rhizomucor miehei lipase and Candida antarctica lipase B for the effective enrichment of omega-3 fatty acids in fish oil. Int. J. Biol. Macromol., 260, 129362. https://doi.org/10.1016/j.ijbiomac.2024.129362

Nekrasov, P.O., Berezka, T.O., Nekrasov, O.P., Gudz, O.M., Molchenko, S.M., Rudneva, S.I. (2023). Optimization of the parameters of biocatalytic hydrolysis of vegetable oil using the methods of neural networks and genetic algorithms. Journal of Chemistry and Technologies, 31(1), 140–146. https://doi.org/10.15421/jchemtech.v31i1.274704

Chandra, P., Enespa, Singh, R., Arora, P.K. (2020) Microbial lipases and their industrial applications: A comprehensive review. Microb. Cell Fact., 19(1), 169. https://doi.org/10.1186/s12934-020-01428-8

Mehta, A., Guleria, S., Sharma, R., Gupta, R. (2020) The lipases and their applications with emphasis on food industry. Microb. Biotechnol. Food Health, 143–164. https://doi.org/10.1016/B978-0-12-819813-1.00006-2

Watson, R.R., Demeester, F. (2016). Handbook of lipids in human function: fatty acids. USA: Academic Press and AOCS Press.

International Organization for Standardization. (2021). Determination of water. Karl Fischer method (General method). Geneva, Switzerland: International Organization for Standardization.

Firestone, D. (2020). Official methods and recommended practices of the American Oil Chemist’s Society, 7th ed. – USA: American Oil Chemists’ Society (AOCS).

Schmitz, K.S. (2016). Physical Chemistry: Concepts and Theory. USA: Elsevier.

Benucci, I., Caso, M.C., Bavaro, T., Masci, S., Keršienė, M., Esti, M. (2020). Prolyl endopeptidase from Aspergillus niger immobilized on a food-grade carrier for the production of gluten-reduced beer. Food Control, 110, 106987. https://doi.org/10.1016/j.foodcont.2019.106987

Xie, J., Zhang, Y., Simpson, B. Food enzymes immobilization: novel carriers, techniques and applications (2022). Curr. Opin. Food Sci., 43, 27–35. https://doi.org/10.1016/j.cofs.2021.09.004

Monsalve-Atencio, R., Sanchez-Soto, K., Chica, J., Camaño Echavarría, J.A., Vega-Castro, O. (2022). Interaction between phospholipase and transglutaminase in the production of semi-soft fresh cheese and its effect on the yield, composition, microstructure and textural properties. LWT, 154, 112722. https://doi.org/10.1016/j.lwt.2021.112722

Sutay Kocabaş, D., Lyne, J., Ustunol, Z. (2022). Hydrolytic enzymes in the dairy industry: Applications, market and future perspectives. Trends Food Sci. Technol., 119, 467–475. https://doi.org/10.1016/j.tifs.2021.12.013

Kaushal, J., Khatri, M., Singh, G., Arya, S.K. (2021). A multifaceted enzyme conspicuous in fruit juice clarification: An elaborate review on xylanase. Int. J. Biol. Macromol., 193, 1350–1361. https://doi.org/10.1016/j.ijbiomac.2021.10.194

Dal Magro, L., Pessoa, J.P.S., Klein, M.P., Fernandez-Lafuente, R., Rodrigues, R.C. (2021) Enzymatic clarification of orange juice in continuous bed reactors: Fluidized-bed versus packed-bed reactor. Catal. Today, 362, 184–191. https://doi.org/10.1016/j.cattod.2020.02.003

Taheri-Kafrani, A., Kharazmi, S., Nasrollahzadeh, M., Soozanipour, A., Ejeian, F., Etedali, P., Mansouri-Tehrani, H.-A., Razmjou, A., Yek, S.M.-G., Varma, R.S. (2021). Recent developments in enzyme immobilization technology for high-throughput processing in food industries. Crit. Rev. Food Sci. Nutr., 61(19), 3160–3196. https://doi.org/10.1080/10408398.2020.1793726

Bilal, M., Iqbal, H.M.N. (2020). State-of-the-art strategies and applied perspectives of enzyme biocatalysis in food sector – current status and future trends. Crit. Rev. Food Sci. Nutr., 60(12), 2052–2066. https://doi.org/10.1080/10408398.2019.1627284

Tkachenko, N.A., Nekrasov, P.O., Vikul, S.I. (2016). Optimization of formulation composition of health whey–based beverage. East.-Eur. J. Enterp. Technol., 79(1/10), 49–57 (in Ukrainian). https://doi.org/10.15587/1729-4061.2016.59695

de Souza, T.S.P., Kawaguti, H.Y. (2021). Cellulases, Hemicellulases, and Pectinases: Applications in the Food and Beverage Industry. Food Bioprocess Technol., 14(8), 1446–1477. https://doi.org/10.1007/s11947-021-02678-z

Zorn, K., Oroz-Guinea, I., Brundiek, H., Bornscheuer, U.T. (2016). Engineering and application of enzymes for lipid modification, an update. Prog. Lipid Res., 63, 153–164. https://doi.org/10.1016/j.plipres.2016.06.001

Serrano-Arnaldos, M., Bastida, J., Máximo, F., Ortega-Requena, S., Montiel, C. (2018). One-step solvent-free production of a spermaceti analogue using commercial immobilized lipases. ChemistrySelect, 3(2), 748–752. https://doi.org/10.1002/slct.201702332

Xiaoyang, S., Shaojun, T., Lifen, Z., Jianchun, X. (2019). Effect of phospholipase A1 -catalyzed degumming on oryzanol, tocopherols, and tocotrienols of dewaxed rice bran oil. J. Chem., 2019, 1608750. https://doi.org/10.1155/2019/1608750

Filho, D. G., Silva, A. G., Guidini, C. Z. (2019). Lipases: sources, immobilization methods, and industrial applications. Appl. Microbiol. Biotechnol., 103(18), 7399–7423. https://doi.org/10.1007/s00253-019-10027-6

Sarmah, N., Revathi, D., Sheelu, G., Yamuna Rani, K., Sridhar, S., Mehtab, V., Sumana, C. (2018). Recent advances on sources and industrial applications of lipases. Biotechnol. Prog., 34(1), 5–28. https://doi.org/10.1002/btpr.2581

Javed, S., Azeem, F., Hussain, S., Rasul, I., Siddique, M. H., Riaz, M., Afzal, M., Kouser, A., Nadeem, H. (2018). Bacterial lipases: A review on purification and characterization. Prog. Biophys. Mol. Biol., 132, 23–34. https://doi.org/10.1016/j.pbiomolbio.2017.07.014

Arana-Peña, S., Carballares, D., Berenguer-Murcia, Á., Alcántara, A.R., Rodrigues, R.C., Fernandez-Lafuente, R. (2020). One pot use of combilipases for full modification of oils and fats: Multifunctional and heterogeneous substrates Catalysts, 10 (6), art. no. 605. https://doi.org/10.3390/catal10060605

Ai H., Lee Y.-Y., Xie X., Tan C.P., Ming Lai O., Li A., Wang Y., Zhang Z. (2023). Structured lipids produced from palm-olein oil by interesterification: A controllable lipase-catalyzed approach in a solvent-free system. Food Chemistry, 412, 135558. https://doi.org/10.1016/j.foodchem.2023.135558

Saikia, K., Rathankumar, A.K., Vaithyanathan, V.K., Cabana, H., Vaidyanathan, V.K. (2021). Preparation of highly diffusible porous cross-linked lipase B from Candida antarctica conjugates: Advances in mass transfer and application in transesterification of 5 Hydroxymethylfurfural. Int. J. Biol. Macromol., 170, 583–592. https://doi.org/10.1016/j.ijbiomac.2020.12.178

Zhou, H., Zhang, Z., Lee, W.J., Xie, X., Li, A., Wang, Y. (2021). Acyl migration occurrence of palm olein during interesterification catalyzed by sn-1,3 specific lipase. LWT, 142, 111023 . https://doi.org/10.1016/j.lwt.2021.111023

Akil, E., Pereira, A.D.S., El-Bacha, T., Amaral, P.F.F., Torres, A.G. (2020) Efficient production of bioactive structured lipids by fast acidolysis catalyzed by Yarrowia lipolytica lipase, free and immobilized in chitosan-alginate beads, in solvent-free medium. Int. J. Biol. Macromol., 163, 910–918. https://doi.org/10.1016/j.ijbiomac.2020.06.282

Ramos, M.D., Miranda, L.P., Fernandez-Lafuente, R., Kopp, W., Tardioli, P.W. (2019). Improving the yields and reaction rate in the ethanolysis of soybean oil by using mixtures of lipase CLEAs. Molecules, 24(23), 4392. https://doi.org/10.3390/molecules24234392

Pedro, K.C.N.R., da Silva, J.V.V., Cipolatti, E.P., Manoel, E.A., Campisano, I.S.P., Henriques, C.A., Langone, M.A.P. (2023). Adsorption of lipases on porous silica-based materials for esterification in a solvent-free system. 3 Biotech, 13(11), 380. https://doi.org/10.1007/s13205-023-03801-x

Martins, P.A., Trobo-Maseda, L., Lima, F.A., de Morais Júnior, W.G., De Marco, J.L., Salum, T.F.C., Guisán, J.M. (2022) Omega-3 production by fish oil hydrolysis using a lipase from Burkholderia gladioli BRM58833 immobilized and stabilized by post-immobilization techniques. Biochem. Biophys. Rep., 29, 101193. https://doi.org/10.1016/j.bbrep.2021.101193

Kavadia, M.R., Yadav, M.G., Vadgama, R.N., Odaneth, A.A., Lali, A.M. (2019). Production of trans-free interesterified fat using indigenously immobilized lipase. Prep. Biochem. Biotechnol., 49(5), 444–452. https://doi.org/10.1080/10826068.2019.1566142

Nekrasov, P.O., Gudz, O.M., Nekrasov, O.P., Kishchenko, V.A., Holubets, O.V. (2019). [Fatty systems with reduced content of trans-fatty acids]. Voprosy khimii i khimicheskoi technologii – Issues of Chemistry and Chemical Technology, (3), 132–138 (in Ukrainian). https://doi.org/10.32434/0321-4095-2019-124-3-132-138

Nekrasov, P.O., Gudz, O.M., Nekrasov, O.P., Berezka, T.O. (2020). Optimizing the parameters of the production process of fat systems with a minimum content of trans-isomers. Voprosy khimii i khimicheskoi technologii – Issues of Chemistry and Chemical Technology, (3), 128–133. https://doi.org/10.32434/0321-4095-2020-130-3-128-133

Nekrasov, P.O., Berezka, T.O., Nekrasov, O.P., Gudz, O.M., Rudneva, S.I., Molchenko, S.M. (2022). Study of biocatalytic synthesis of phytosterol esters as formulation components of nutritional systems for health purposes. Journal of Chemistry and Technologies, 30(3), 404–409. https://doi.org/10.15421/jchemtech.v30i3.265174

Nekrasov, P.O., Piven, O.M., Nekrasov, O.P., Gudz, O.M., Kryvonis, N.O. (2018). Kinetics and thermodynamics of biocatalytic glycerolysis of triacylglycerols enriched with omega-3 polyunsaturated fatty acids. Voprosy khimii i khimicheskoi technologii – Issues of Chemistry and Chemical Technology, (5), 31–36. doi: 10.32434/0321-4095-2021-137-4-89-95

Ahrari, F., Mohammadi, M. (2024). Combined cross-linking of Rhizomucor miehei lipase and Candida antarctica lipase B for the effective enrichment of omega-3 fatty acids in fish oil. Int. J. Biol. Macromol., 260, 129362. https://doi.org/10.1016/j.ijbiomac.2024.129362

Nekrasov, P.O., Berezka, T.O., Nekrasov, O.P., Gudz, O.M., Molchenko, S.M., Rudneva, S.I. (2023). Optimization of the parameters of biocatalytic hydrolysis of vegetable oil using the methods of neural networks and genetic algorithms. Journal of Chemistry and Technologies, 31(1), 140–146. https://doi.org/10.15421/jchemtech.v31i1.274704

Chandra, P., Enespa, Singh, R., Arora, P.K. (2020) Microbial lipases and their industrial applications: A comprehensive review. Microb. Cell Fact., 19(1), 169. https://doi.org/10.1186/s12934-020-01428-8

Mehta, A., Guleria, S., Sharma, R., Gupta, R. (2020) The lipases and their applications with emphasis on food industry. Microb. Biotechnol. Food Health, 143–164. https://doi.org/10.1016/B978-0-12-819813-1.00006-2

Watson, R.R., Demeester, F. (2016). Handbook of lipids in human function: fatty acids. USA: Academic Press and AOCS Press.

International Organization for Standardization. (2021). Determination of water. Karl Fischer method (General method). Geneva, Switzerland: International Organization for Standardization.

Firestone, D. (2020). Official methods and recommended practices of the American Oil Chemist’s Society, 7th ed. – USA: American Oil Chemists’ Society (AOCS).

Schmitz, K.S. (2016). Physical Chemistry: Concepts and Theory. USA: Elsevier.

Downloads

Published

2024-04-26