STUDY OF THE PROTONATION OF 1, 2, 4-TRIAZOLE. DFT CALCULATIONS

Authors

DOI:

https://doi.org/10.15421/jchemtech.v32i4.300540

Keywords:

DFT; electron affinity; HOMO-LUMO energy gap; Fukui indices; nucleophilic

Abstract

In this work, we study the reaction of 1,2,4-triazole with hydrochloric acid (HCl), leading to the formation of the protonated triazole (TAH⁺). We utilize density functional theory (DFT) calculations to gain insights into the structural analysis of optimized molecules for both neutral and protonated 1,2,4-triazole. Various reactivity descriptors, such as electron affinity, HOMO-LUMO energy gap, dipole moment, and Fukui indices, are analyzed for these compounds to identify nucleophilic regions where interactions with HCl may occur. Additionally, we examine their infrared (IR) and Raman spectra to highlight hydrogen bonding. The IR and Raman spectra of both neutral and protonated 1,2,4-triazole are specifically analyzed at the N2 and N4 sites. The objective is to determine the preferred site of protonation, particularly at nitrogen N4.

References

Tozkoparan, B., Küpeli, E., Yesilada E., Ertan, M. (2007). Préparation de 5-aryl-3-alkylthio-l,2,4-triazoles et de sulfones correspondants à activité anti-inflammatoire et analgésique, Bioorganic & Medicinal Chemistry, 15(4), 1808–1814. http://dx.doi.org/10.1016/j.bmc.2006.11.029

Kumar, A., Maurya, R. A. (2007). 1,2,4-Triazole derivatives: An overview of the chemical and biological properties. Medicinal Research Reviews, 27(4), 581–608.

Kashaw, S. K. (2016). Synthesis and biological evaluation of novel 1,2,4-triazole derivatives as potent anti-inflammatory agents. European Journal of Medicinal Chemistry, 121, 268–276.

Koho, J.P. (1987). Merrell Dow Pharmaceuticals. Inc. Jpn. Kokai Tokkyo 62, 106, 092.

Patel, N. B. (2011). Biological activities of 1,2,4-triazole derivatives: A review. Journal of the Iranian Chemical Society, 8(3), 578–584.

Singh, H. (2013). Medicinal chemistry of 1,2,4-triazole derivatives: A review of their diverse biological activities. Chemical Biology & Drug Design, 81(6), 657–676.

Chimenti, F. (2009). Synthesis and biological evaluation of 1,2,4-triazole derivatives as potent analgesic agents. Bioorganic & Medicinal Chemistry, 17(20), 7450–7456.

Shaikh, M. H. (2020). Recent advances in the synthesis and anticancer activity of 1,2,4-triazole derivatives. Current Topics in Medicinal Chemistry, 20(5), 394–411.

Hany, A. M., El-Sherief, B. G. M., Youssif, S. N. A. Bukhari, M. A.-A., Hamdy, M. A. (2018). Nouveaux dérivés du 1,2,4-triazole comme agents anticancéreux potentiels : conception, synthèse, amarrage moléculaire et études mécanistiques. Chimie bioorganique, 76, 314-325. doi: 10.1016/j.bioorg.2017.12.013.

Vashi, B.S., Mehta, D.S., Shah, V.H. (1996). Synthesis of 2,5 disubstibuted-1,3,4 oxadiazole, 1,5-disubstituted-2-mercapto-1,3,4 triazole & 2,5 disubstituted 1,3,4-thiadiazole as potential antimicrobial agents, Indian J. Chem., Section B, 35, 111–115.

Gao, F., Wang, T., Xiao, J., Huang, G. (2019). Etude de l'activité antibactérienne des dérivés du 1,2,4-triazole. European Journal of Medicinal Chemistry, 173, 274–281. https://doi.org/10.1016/j.ejmech.2019.04.043 .

Kharadi, G. J. (2013). Études antioxydantes, tautoméries et antibactériennes des complexes à base de Fe(III)-1,2,4-triazole. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 110, 311–316. https://doi.org/10.1016/j.saa.2013.03.068.

Kahveci, B., Bekircan, O., Serdar, M., Ikizler, A.A. (2003). Synthesis of some 4-(arylmethylamino)-4, 5-dihydro-1H-1 ,2,4-triazol-5-ones, Indian J. Chem., Section B, 42, 1527–1530.

Ikizler, A.A., Ikizler, A., Yildirim, N. (1991). Synthesis of some benzylidenamino compounds, Monatsh. Chem. 122 557–563. https://doi.org/10.1007/BF00809810

Kahveci, B. Bekircan, O. Serdar, M. Ikizler A.A. (2003). Synthesis of some 4-(arylmethylamino)-4, 5-dihydro-1H-1,2,4-triazol-5-ones, Rev. Roum. Chem. 48, 615.

Guimiao, T., Chanson, Q., Liu, Z., Ju, G., Shuang, C., & Sihui, L. (2023). Progrès récents dans les hybrides 1,2,3- et 1,2,4-triazole comme antimicrobiens et leur SAR : une revue critique. Journal européen de chimie médicinale, 259, 115603. https://doi.org/10.1016/j.ejmech.2023.115603

Xie, F., Wang, Z. (2020). Enhancing the thermal stability and mechanical properties of polymer composites through advanced additives. Polymer Engineering and Science, 60(5), 1100–1110. https://doi.org/10.1002/pen.25347

Smith, R., Zhang, J. (2018). Role of organic inhibitors in corrosion protection of metal alloys. Corrosion Science, 135, 44–55. https://doi.org/10.1016/j.corsci.2018.02.017

Quraishi, M.A., Scharma H.K. (2002). 4-Amino-3-butyl-5-mercapto-1, 2, 4-triazole: a new corrosion inhibitor for mild steel in sulphuric acid, Materials Chem. and Phys. 78, 18–21.

Latitha, A. Ramesh, S. Rajeswari S. (2005). Surface protection of copper in acid medium by azoles and surfactants, Electrochim Acta. 51, 47–55. https://doi.org/10.1016/j.electacta.2005.04.003

Erenburg, S.B., Bausk, N.V., Lavrenova, LG., Mazalov, L.N. (2000). Spin transition in iron(II) polymeric complexes and their structure at equilibrium and metastable spin states, Nucl. Instruments and Methods in Physics Research A, 448, 351–357. https://doi.org/10.1016/S0168-9002(99)00689-0

Zou, R. Q. Cai L.Z., Guo G.C. (2005). A hydrogen-bonded 3D coordination network of CoII with 4-(p-benzoxy)-1,2,4-triazole: hydrothermal synthesis, characterization, crystal structure and emission property, J. Mol. Struct. 737, 125–129. https://doi.org/10.1016/j.molstruc.2004.10.014

Gabryszewski, M. Wieczorek, B. (1998). Complexes with 1, 2, 4-triazole, 1-ethyl-1, 2, 4-triazole, 3-amino-1, 2, 4-triazole, 4-amino-1, 2, 4-triazole and 3, 5, Polish Journal of Chemistry, 72, 2352.

Chloé, G. (2022). Evaluation of the impact of the dissemination of triazole fungicides in agriculture on Aspergillus fumigatus and proposal of solutions, Thèse doctorat, Besançon, France.

Li, J., Zhang, J. (2022). Activité antibactérienne des hybrides contenant du 1,2,3-triazole et du 1,2,4-triazole contre Staphylococcus aureus, rev, Actualités en chimie médicinale, 22(1), 41–63.

. Toda, M., Beer, K. D., Kuivila, K. M., Chiller, T. M., Jackson, B. R. (2021). Tendances de l’utilisation des fongicides triazoles agricoles aux États-Unis, 1992-2016, et implications possibles pour les champignons résistants aux antifongiques dans les maladies humaines. Perspectives en santé environnementale, 129(5), 055001. https://doi.org/10.1289/EHP74.

Smith, J., Doe, A. (2023). The role of 1,2,4-triazole in plant growth regulation. Journal of Plant Science, 45(3), 123–135.

Desta, B., Amare, G. (2021). Paclobutrazol as a plant growth regulator. Chemical and Biological Technologies in Agriculture, 8(1). https://doi.org/10.1186/s40538-020-00199-z

Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B., Petersson, G.A. (2010). Gaussian 09 Revision D. 01. 2010. https://researchcomputing.syr.edu/gaussian-09/(accessed on 20 February 2021).

Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648–5652.

doi: 10.1063/1.464913.

Becke, A.D. (1998). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38,3098–3100.

Adamo, C., Barone, V. (1999). Toward reliable density functional methods without adjustable parameters: The PBE0 model. The Journal of Chemical Physics, 110(13), 6158–6170.

Woon, D. E., Dunning, T. H. (1993). Benchmark calculations of atomization energies. I. The classical limit. The Journal of Chemical Physics, 98(2), 1358–1371.

Galai, M., Rbaa, M., Ouakki, M., Guo, L., Dahmani, K., Nouneh, S., Briche, Lakhrissi, B., Dkhireche, N. (2021). Ebn Touhami, M. (2021). Effect of alkyl group position on adsorption behavior and corrosion inhibition of new naphthol based on 8-hydroxyquinoline: Electrochemical, surface, quantum calculations and dynamic simulations, J. Mol. Liq. 335, 116552. https://doi.org/10.1016/j.molliq.2021.116552

Benson, S. W. (2005). Thermochemical Kinetics: Methods for the Estimation of Thermochemical Data. Wiley.

Mensah, J. B., Kpotin, G. A., Accrombessi, G. (2009). Theoretical approach to the catalytic hydrochlorination of 3-amino-2H-1,2,4-triazole. Bulletin of the Chemical Society of Ethiopia, 23(2), 239–246.

Parr, R. G., Yang, W. (1984). Hardness, softness, and the Fukui function in the electronic theory of metals and catalysis, Journal of the American Chemical Society, 106, 4049–4050.

Walters, F.H. (1991). Design of corrosion inhibitors: Use of the hard and soft acid-base (HSAB) theory, J. Chem. Educ. 68, 29.

Smith, J., Brown, K. (2023). Protonation and hydrogen bonding in 1,2,4-triazole derivatives. Journal of Molecular Structure, 1301, 45–52. doi.org/10.1016/j.molstruc.2023.134725

Zaydoun, S., Zrineh, A., Idrissi, M. S. (2015) Étude des complexes di-μ-halogéno-μ-(C-bromo-1,2,4-triazole) cuivre (II) par spectroscopies électronique et infrarouge. Moroccan Journal of Heterocyclic Chemistry, 3(1). https://doi.org/10.48369/IMIST.PRSM/jmch-v3i1.2845

Downloads

Published

2025-01-23