GENERALIZED MODEL OF HEAT TRANSFER BETWEEN SOLID WALL AND SUBLIMATING OR MELTING RFRIGERENT
DOI:
https://doi.org/10.15421/jchemtech.v32i2.303048Keywords:
heat transfer, sublimation, criterion equation, melting, fluid dynamicsAbstract
Heat exchange between a solid surface and the surface of a melting or sublimating refrigerant has long been used in low-temperature engineering. With such a rich history of sublimation chillers, it's surprising that no universal and reliable methods have been developed for the design of heat exchangers that remove heat by the sublimation or melting of a solid refrigerant. A simple and universal mathematical model for the process of heat transfer from the wall of the heat exchanger apparatus to the sublimating or melting refrigerant has been proposed. The analysis of this model led to the development of a system of dimensionless criteria and a criterion equation that can describe a wide range of processes involving melting or sublimating refrigerant on the working surface. Comparison of present experimental data and calculated data shows a good agreement between the results. The equations obtained can be used to improve the design of heat exchangers with melting or sublimating refrigerant.
References
Chen, L., Zhang, X.-R. (2014). A review study of solid-gas sublimation flow for refrigeration: From basic mechanism to applications. International journal of refrigeration, 40, 61–83.
Ding, Y., He, Y., Cong, N.T., Yang, W., Chen, H. (2008). Hydrodynamics and heat transfer of gas-solid two-phase mixtures flowing through packed beds e a review. Prog. Nat. Sci. 18, 185e1196.doi:10.1016/j.pnsc.2008.03.023
Papanelopoulou, F.,Cailletet,L. P. (2013). The liquefaction of oxygen and the emergence of low-temperature research. 2013. Notes and Records. Royal Society Journal of the History of Science. 67, doi:10.1098/rsnr.2013.0047
Nast, T.S., Barnes, C.B., Wedel, R.K. (1978). Development and orbital operation of two-stage solid cryogen cooler.J. Spacecr. Rockets,15(2), 85–91.
Spur, G., Uhlmann, E., Elbing, F.(1999). Dry-ice blasting for cleaning: process, optimization and application. Wear, 233, 402e411.
Zhang, X.R., Yamaguchi, H., (2011). An experimental study on heat transfer of CO2solide-gas two phase flow with dry ice sublimation. Int. J. Therm. Sci., 50, 228e2234.https://doi.org/10.1016/j.ijthermalsci.2011.05.019
Kravchenko, M.B. (2007). Study of heat transfer in the sublimation or melting of the refrigerant on the wall of the heat exchanger. Industrial gases, 2(22), 22–27. (In Russian).
Purandare, A.S., Cuartas-Vélez, C., Smeman, N., Schremb, M., Bosschaart, N., Vanapalli, S. (2024). Experimental and theoretical investigation of the Leidenfrost dynamics of solid carbon dioxide discs sublimating on a solid substrate. International Journal of Heat and Mass Transfer, 224, 125300. https://doi.org/10.1016/j.ijheatmasstransfer.2024.125300
Aoki, K., Sawada, M., Akahori, M., (2002). Freezing due to directcontact heat transfer including sublimation. Int. J. Refrigeration, 25, 235e242.
Burton, J.C.,Sharpe, A.L.,van der Veen, R.C.A. Franco, A. Nagel, S.R. (2012). Geometry of thevapor layer under a leidenfrost drop, Phys. Rev. Lett., 109, 074301, https://doi .org /10.1103/PhysRevLett.109.074301.
Sobac, B.,Rednikov, A.,Dorbolo, S.,Colinet, P. (2017). Self-propelled leidenfrost drops ona thermal gradient: a theoretical study, Phys. Fluids, 29, 082101, https://doi.org /10.1063/1.4990840.
Graeber, G. Regulagadda, K. Hodel, P. Küttel, C. Landolf, D. Schutzius,T.M. Poulikakos, D. (2021).Leidenfrost droplet trampolining, Nat. Commun., 1, 1727,https://doi.org /10.1038/s41467-021-21981-z
Lee, G.G.,Noh, H.,Kwak, H.J.,Kim, T.K.,Park, H.,Fezzaa, K. Kim, M.H. (2018). Measurement of the vapor layer under a dynamic leidenfrost drop, Int. J. Heat Mass Transf., 124, 1163–1171, https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.050.
Castanet, G.,Chaze, W.,Caballina, O.,Collignon, R.,Lemoine, F. (2018). Transient evolutionof the heat transfer and the vapor film thickness at the drop impact in the regime offilm boiling, Phys. Fluids, 30122109. https://doi.org /10.1063 /1 .5059388.
Van Limbeek, M. Nes, T. Vanapalli, S. (2020). Impact dynamics and heat transfer characteristicsof liquid nitrogen drops on a sapphire prism, Int. J. Heat Mass Transf., 148, 118999.https://doi.org/10.1016 /j.ijheatmasstransfer.2019.118999.
Lingshan, L., Wenyu, L., Xiaohua, L., Tao, Z.(2023). Experimental Investigation of Ice Sublimation Process on Ice Surface in Ice Rink. Energy and Buildings, 298(1–2), 113543. https://doi.org/10.1016/j.enbuild.2023.113543
Dvornitsyn, A. P. (1986).Sublimation microcoolers for temperature control of objects at a temperature level of 200K. (Unpublished dissertation for the scientific degree of Candidate of Sciences). Odessa.
Dvornitsyn, A., Naer, V., Rozhentsev, A., (2004). Autostructurizingsolid phase of a refrigerant as a multi-functional lowtemperatureunit of a cooler. Int. J. Refrigeration, 27, 484e491.https://doi.org/10.1016/j.ijrefrig.2004.03.014
Dvornitsyn, A., Naer, V., Rozhentsev, A. (2006). Experimentalinvestigation of a bottle-sublimation cooler. Int. J.Refrigeration, 29, 101e109.https://doi.org/10.1016/j.ijrefrig.2005.05.013
Thermophysical Properties of Materials for Nuclear Engineering: A Tutorial and Collection of Data. (2008). International atomic energy agency. VIENNA.
Wang W., Niu J., Li Y-Z., Ren C. (2022). Numerical study on heat transfer enhancement by spray-sublimation cooling with dray ice particles. Applied Thermal Engineering, 214, 118809. https://doi.org/10.1016/j.applthermaleng.2022.118809
Bouillant, A., Mouterde, T., Bourrianne, P., Lagarde, A., Clanet, C., Quéré, D. (2018). Leidenfrost wheels, Nature Physics. 14, 1188–1192.
https://doi .org /10 .1038 /s41567-018 -0275 -9 .
Chantelot, P., Lohse, D. (2021). Leidenfrost effect as a directed percolation phase transition, Phys. Rev. Lett. 127, 124502.
https://doi .org /10 .1103 /PhysRevLett.127.124502.
Van Limbeek, M., Nes, T., Vanapalli, S. (2020). Impact dynamics and heat transfer characteristics of liquid nitrogen drops on a sapphire prism. International Journal of Heat and Mass Transfer, 148, 118999. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118999.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Oles Honchar Dnipro National University
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).