INFLUENCE OF SYNTHESIS CONDITIONS ON THE STRUCTURAL AND MAGNETIC PROPERTIES OF CoFe2O4

Authors

DOI:

https://doi.org/10.15421/jchemtech.v32i2.303152

Keywords:

precipitation; sodium hydroxide; simplex-lattice planning of the experiment; response function.

Abstract

The article proposes the synthesis of CoFe2O4 by a modified coprecipitation method followed by plasma treatment. With the help of simplex planning of the experiment, the samples were synthesized using different precipitants. X-ray phase analysis and vibrational magnetometry were used to characterize the obtained samples. Diagrams of the composition of the precipitator and the response function are given in the paper. Alkalis in the NaOH - LiOH - KOH system were used as precipitants. The response functions were a coercive force, saturation magnetization, average crystallite size, crystallite size along the X-ray pattern line (311), crystallite size along the X-ray pattern line (400), dislocation density, and percentage of microstrains. Summarizing the results of mathematical modeling and graphical display of experimental data, presented in the form of composition-property diagrams, made it possible to quantitatively assess the influence of the nature of the precipitant on the structural and magnetic properties of cobalt ferrites. The saturation magnetization for samples obtained using sodium hydroxide is higher than for other samples. High saturation magnetization values also apply to samples along the NaOH-LiOH line. It is established that isolines corresponding to high values of saturation magnetization coincide with larger values of the lattice parameter. An inverse relationship is observed for the values of microstresses and the density of dislocations. That is, a more perfect crystal structure corresponds to improved magnetic properties. X-ray phase analysis also showed that the presence of impurities reduces the saturation magnetization and increases the coercive force.

References

Salih, S. J., Mahmood, W. M. (2023). Review on magnetic spinel ferrite (MFe2O4) nanoparticles: From synthesis to application. Heliyon., 9(6), E16601. https://doi.org/10.1016/j.heliyon.2023.e16601

Liandi, A. R., Cahyana, A. H., Kusumah, A. J. F., Lupitasari, A., Alfariza, D. N., Nuraini, R., Kusumasari, F. C. (2023). Recent trends of spinel ferrites (MFe2O4: Mn, Co, Ni, Cu, Zn) applications as an environmentally friendly catalyst in multicomponent reactions: A review. Case Studies in Chemical and Environmental Engineering, 7, 100303. https://doi.org/10.1016/j.cscee.2023.100303

Dastjerdi, O. D., Shokrollahi, H., Mirshekari, S. (2023). A review of synthesis, characterization, and magnetic properties of soft spinel ferrites. Inorganic Chemistry Communications, 110797. https://doi.org/10.1016/j.inoche.2023.110797

Benlembarek, M., Salhi, N., Benrabaa, R., Djaballah, A. M., Boulahouache, A., Trari, M. (2022). Synthesis, physical and electrochemical properties of the spinel CoFe2O4: application to the photocatalytic hydrogen production. International Journal of Hydrogen Energy, 47(15), 9239–9247. https://doi.org/10.1016/j.ijhydene.2021.12.270

Rani, B., Nayak, A. K., Sahu, N. K. (2021). Electrochemical supercapacitor application of CoFe2O4 nanoparticles decorated over graphitic carbon nitride. Diamond and Related Materials, 120, 108671. https://doi.org/10.1016/j.diamond.2021.108671

Mariosi, F. R., Venturini, J., da Cas Viegas, A., Bergmann, C. P. (2020). Lanthanum-doped spinel cobalt ferrite (CoFe2O4) nanoparticles for environmental applications. Ceramics International, 46(3), 2772–2779. https://doi.org/10.1016/j.ceramint.2019.09.266

Abraime, B., El Maalam, K., Fkhar, L., Mahmoud, A., Boschini, F., Tamerd, M. A., Mounkachi, O. (2020). Influence of synthesis methods with low annealing temperature on the structural and magnetic properties of CoFe2O4 nanopowders for permanent magnet application. Journal of Magnetism and Magnetic Materials, 500, 166416. https://doi.org/10.1016/j.jmmm.2020.166416

Modabberasl, A., Pirhoushyaran, T., Esmaeili-Faraj, S. H. (2022). Synthesis of CoFe2O4 magnetic nanoparticles for application in photocatalytic removal of azithromycin from wastewater. Scientific Reports, 12(1), 19171. https://doi.org/10.1038/s41598-022-21231-2

Foroutan, R., Peighambardoust, S. J., Mohammadi, R., Peighambardoust, S. H., Ramavandi, B. (2022). Application of waste chalk/CoFe2O4/K2CO3 composite as a reclaimable catalyst for biodiesel generation from sunflower oil. Chemosphere, 289, 133226. https://doi.org/10.1016/j.chemosphere.2021.133226

Akhtar, S., Slimani, Y., Almessiere, M. A., Baykal, A., Polat, E. G., Caliskan, S. (2023). Influence of Tm and Tb co-substitution on structural and magnetic features of CoFe2O4 nanospinel ferrites. Nano-Structures & Nano-Objects, 33, 100944. https://doi.org/10.1016/j.nanoso.2023.100944

Das, A., Palliyan, A. J., Sahoo, A. K., Mohanty, J. R., Gorige, V. (2023). Structure, magnetic morphology and magnetization correlations in pulsed laser deposited CoFe2O4 (111) thin films. Thin Solid Films, 770, 139763. https://doi.org/10.1016/j.tsf.2023.139763

Kuekha, R., Mubarak, T. H., Azhdar, B. (2023). Synthesis, structural, magnetic, and dielectric properties of Ni2+, Mn2+ Co-substituted CoFe2O4 nanoferrites using sol–gel auto combustion method. Materials Science and Engineering: B, 292, 116411. https://doi.org/10.1016/j.mseb.2023.116411

Ravindra, A. V., Ju, S. (2023). Mesoporous CoFe2O4 nanocrystals: Rapid microwave-hydrothermal synthesis and effect of synthesis temperature on properties. Materials Chemistry and Physics, 303, 127818. https://doi.org/10.1016/j.matchemphys.2023.127818

Prakshale, R., Bangale, S., Kamble, M., Sonawale, S. (2023). Synthesis, study and characterization of spinel CoFe2O4 for the ethanol gas-sensing applications. Journal of Materials Science: Materials in Electronics, 34(27), 1852. https://doi.org/10.1007/s10854-023-11253-5

Basha, B., Ikram, M., Alrowaili, Z. A., Al-Buriahi, M. S., Anwar, M., Suleman, M. (2023). Wet chemical route synthesis of Cr doped CoFe2O4@ rGO nanocomposite for photodegradation of organic effluents present in drinking water. Ceramics International, 49(18), 30049–30059. https://doi.org/10.1016/j.ceramint.2023.06.262

Choopannezhad, S., Hassanzadeh-Tabrizi, S. A. (2023). Synthesis of CoFe2O4-CaCO3 nanocomposite for simultaneous magnetic hyperthermia and drug release applications. Journal of Alloys and Compounds, 960, 170636. https://doi.org/10.1016/j.jallcom.2023.170636

Frolova, L., Sukhyy, K. (2022). Investigation of the ferritization process in the Co 2+–Fe 2+–SO 4 2−–OH− system under the action of contact non-equilibrium low-temperature plasma. Applied Nanoscience, 12, 1029–1036. https://doi.org/10.1007/s13204-021-01755-1

Frolova, L., Derimova, A., Khlopytskyi, A., Galivets, Y., Savchenko, M. (2016). Investigation of phase formation in the system Fe2+/Co2+/O2/H2O. Eastern-European Journal of Enterprise Technologies, 6(6), 64–68. doi: 10.15587/1729-4061.2016.85123

Frolova, L. A. (2014). Production conditions of iron oxide black from pickle liquors. Metallurgical & Mining Industry, (4), 65–69.

Frolova, L. (2020). Photocatalytic activity of spinel ferrites CoxFe3−xO4 (0.25< x< 1) obtained by treatment contact low-temperature non-equilibrium plasma liquors. Applied Nanoscience, 10(12), 4585. doi:10.1007/s13204-020-01344-8

Drissi, S. H., Refait, P., Abdelmoula, M., Génin, J. M. R. (1995). The preparation and thermodynamic properties of Fe (II)/ Fe (III) hydroxide-carbonate (green rust 1); Pourbaix diagram of iron in carbonate-containing aqueous media. Corrosion science, 37(12), 2025-2041. https://doi.org/10.1016/0010-938X(95)00096-3

Dlamini, H., Pollak, H., Coville, N. J., Van Wyk, J. A. (1999). Influence of preparation conditions on precipitated iron oxides and hydroxides: a Moessbauer spectroscopy study (No. IAEA-TECDOC--1069).

Frolova, L. A., Derimova, A. V., Butyrina, T. E., Savchenko, M. O. (2018). An Investigation of the Mechanism Magnetite Precipitation Using Ammonium Carbonate. Eurasian Chemico-Technological Journal, 20(3), 223–228. DOI: 10.18321/ectj725

Himabindu, B., Devi, N. L., Kanth, B. R. (2021). Microstructural parameters from X-ray peak profile analysis by Williamson-Hall models; A review. Materials Today: Proceedings, 47, 4891–4896. https://doi.org/10.1016/j.matpr.2021.06.256

Downloads

Published

2024-07-10