CHEMOTAXONOMIC SIGNIFICANCE ASSESSMENT OF PHYTOCHEMICAL HETEROGENEITY OF THE GENUS SORBUS INFLORESCENCES
DOI:
https://doi.org/10.15421/jchemtech.v32i2.303257Keywords:
Sorbus L., inflorescences, phytocompounds, multivariate analysis, chemotaxonomyAbstract
The chemotaxonomic value of phytocompounds heterogeneity in inflorescences of different plants the same genus was tested by analyzing the phytochemical profiles of inflorescences hexane extracts of Sorbus aria species and three natural hybrids for which this species is the parental. Specific distribution of saturated and unsaturated fatty acids, aldehydes, alcohols, alkanes, terpenoids, nitrogen-containing and sulfur-containing compounds identified by the GC-MS was found in the floral extracts. Multivariate analysis of obtained data determined two principal components that described 84.4 % of metabolites total variance, and established the phytocompounds that corresponded to the greatest extent to the inflorescence’s identity. Cluster analysis showed different relatedness levels between the parental species S. aria and the hybridogenic species S. hybrida, S. latifolia, and S. intermedia. The multivariate analysis results agree with the studied natural hybrids known genetic data, which confirms the chemotaxonomic value of the inflorescences chemical diversity and determines the prospects of such a direction of research.
References
Arvinte, O.M.; Senila, L.; Becze, A.; Amariei, S. (2023). Rowanberry – A Source of Bioactive Compounds and Their Biopharmaceutical Properties. Plants (Basel). 12(18), 3225. https://doi.org/10.3390/plants12183225
Li, M.; Tetsuo, O.T.; Gao, Y.D.; Xu, B.; Zhu, Z.M.; Ju, W.B.; Gao, X.F. (2017). Molecular phylogenetics and historical biogeography of Sorbus sensu stricto (Rosaceae). Mol Phylogenet Evol., 111, 76–86. https://doi.org/10.1016/j.ympev.2017.03.018.
Olszewska, M.A.; Kolodziejczyk-Czepas, J.; Rutkowska, M.; Magiera, A.; Michel, P.; Rejman, M.W.; Nowak, P.; Owczarek, A. (2019). The Effect of Standardized Flower Extracts of Sorbus aucuparia L. on Proinflammatory Enzymes, Multiple Oxidants, and Oxidative/Nitrative Damage of Human Plasma Components In Vitro. Oxidative Medicine and Cellular Longevity, 9746358. https://doi.org/10.1155/2019/9746358.
Fedoronchuk, M. M. (2017). Taxa of Rosaceae of the Ukrainian flora: position in a new system of the family according to molecular phylogenetic data. Ukr. Bot. J., 4(1), 3–15. https://doi.org/10.15407/ukrbotj74.01.003
Sołtys, A.; Galanty, A.; Podolak, I. (2020). Ethnopharmacologically important but underestimated genus Sorbus: a comprehensive review. Phytochem. Rev., 19, 491–526. https://doi.org/10.1007/s11101-020-09674-9
Németh, C.; Papp, N.; Nosková, J.; Höhn, M. (2020). Speciation by triparental hybridization in genus Sorbus (Rosaceae). Biologia Futura, 71, 209–222. https://doi.org/10.1007/s42977-020-00003-x
Zymone, K.; Raudone, L.; Žvikas, V.; Jakštas, V.; Janulis, V. (2022). Phytoprofiling of Sorbus L. Inflorescences: A Valuable and Promising Resource for Phenolics. Plants (Basel), 11(24), 3421. https://doi.org/10.3390/plants11243421
Lykholat, Y. V.; Khromykh, N. O.; Liashenko, O. V.; Sklyar, T. V.; Anishchenko, A. O.; Balalaiev, O. K.; Holubieva, T. A.; Lykholat, T. Y. (2023). Phytochemical profiles and antimicrobial activity of the inflorescences of Sorbus domestica, S. aucuparia, and S. torminalis. Biosyst. Divers., 31(3), 290–296. https://doi.org/10.15421/012333
Tahirovic, A.; Mehic, E.; Kjosevski, N.; Bašic, N. (2019). Phenolics content and antioxidant activity of three Sorbus species. Bulletin of Chemists and Technologists of Bosnia and Herzegovina, 53, 15–21. https://doi.org/10.35666/ghtbh.2019.03
Orsavová, J.; Juríková, T.; Bednaříková, R.; Mlček, J. (2023). Total phenolic and total flavonoid content, individual phenolic compounds and antioxidant activity in sweet rowanberry cultivars. Antioxidants, 12(4), 913. https://doi.org/10.3390/antiox12040913
Sarv, V.; Venskutonis, P.R.; Bhat, R. (2020). The Sorbus spp. – Underutilised Plants for Foods and Nutraceuticals: Review on Polyphenolic Phytochemicals and Antioxidant Potential. Antioxidants, 9(9), 813. https://doi.org/10.3390/antiox9090813.
Gaivelyte, K.; Jakstas, V.; Razukas, A.; Janulis, V. (2013). Variation in the contents of neochlorogenic acid, chlorogenic acid and three quercetin glycosides in leaves and fruits of rowan (Sorbus) species and varieties from collections in Lithuania. Nat Prod Commun., 8(8), 1105–1110. https://pubmed.ncbi.nlm.nih.gov/24079179/
Mikulić-Petkovsek, M.; Krska, B.; Kiprovski, B.; Veberic, R. (2017). Bioactive components and antioxidant capacity of fruits from nine Sorbus genotypes. J Food Sci., 82(3), 647–658. https://doi.org/10.1111/1750-3841.13643
Bailie, A.; Renaut, S.; Ubalijoro, E.; Guerrero-Analco, J.A.; Saleem, A.; Haddad, P.; Arnason, J.T.; Johns, T.; Cuerrier, A. (2016). Phytogeographic and genetic variation in Sorbus, a traditional antidiabetic medicine – adaptation in action in both a plant and a discipline. Peer J., 4, e2645. https://doi.org/10.7717/peerj.2645
Khromykh, N.O.; Anishchenko A.A.; Didur O.O.; Gaponov A.A.; Kabar A.M.; Lykholat T.Y. (2020). Cuticular wax composition of mature leaves of species and hybrids of the genus Prunus differing in resistance to clasterosporium disease. Biosyst. Divers., 28(4), 370–375. http://dx.doi.org/10.15421/012047
Khromykh N.O.; Didur O.O.; Sklyar T.V.; Davydov V R.; Lavrentievа K.V.; Lykholat T.Y. (2022). Phytochemical profiles, antioxidant and antimicrobial activity of Actinidia polygama and A. arguta fruits and leaves. Biosyst. Divers., 30(1), 39–45. https://doi.org/10.15421/012205
Wink, M. (2003). Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry, 64, 3–19. https://doi.org/10.1016/S0031-9422(03)00300-5
Fahim, J. R.; Darwish, A. G.; Zawily, A. L. I.; Wells, J.; Abourehab, M. A. S.; Desoukey, S. Y.; Attia, E. Z.; (2023). Exploring the volatile metabolites of three Chorisia species: Comparative headspace GC–MS, multivariate chemometrics, chemotaxonomic significance, and anti-SARS-CoV-2 potential. Saudi Pharmaceutical Journal, 31(5), 706–726. https://doi.org/10.1016%2Fj.jsps.2023.03.012
Spikes, A. E.; Pashen, M. A.; Millar, J. G.; Moreira, J. A.; Hamel, P. B.; Schiff, N. M.; Ginzel, M. D. (2010). First contact pheromone identified for a longhorned beetle (Coleoptera: Cerambycidae) in the subfamily Prioninae. J Chem Ecol., 36(9), 943–954. https://doi.org/10.1007/s10886-010-9837-8
Mujeeb, F.; Bajpai, P.; Pathak, N. (2014). Phytochemical evaluation, antimicrobial activity, and determination of bioactive components from leaves of Aegle marmelos. BioMed Research International, 2014, 497606. https://doi.org/10.1155/2014/497606.
“The Pherobase: Database of Pheromones and Semiochemicals”. El-Sayed, 2023. http://www.pherobase.com/
Ullah, O.; Shah, M.; Ur Rehman, N.; Ullah, S.; Al-Sabahi, J. N.; Alam, T.; Khan, A.; Khan, N. A.; Rafiq, N.; Bilal, S.; Al-Harrasi A. (2022). Aroma Profile and Biological Effects of Ochradenus arabicus Essential Oils: A Comparative Study of Stem, Flowers, and Leaves. Molecules., 27(16), 5197. https://doi.org/10.3390/molecules27165197.
Xu, Z.; Gao, P.; Liu, D.; Song, W;, Zhu, L.; Liu, X. (2022). Chemical Composition and In Vitro Antioxidant Activity of Sida rhombifolia L. Volatile Organic Compounds. Molecules, 27(20), 7067. https://doi.org/10.3390%2Fmolecules27207067
Al-Hajj, N. O. M., Wang, H., Gasmalla, M. A. A.; Ma, C., Thabit, R., Rahman, M. R. T., Tang, Y. (2014). Chemical Composition and Antioxidant Activity of the Essential Oil of Pulicaria Inuloides. Journal of Food and Nutrition Research, 2(5), 221–227. https://DOI:10.12691/jfnr-2-5-3
Fitzgerald, H.; Helpdesk, G. N. (2020). Nordic Crop Wild Relative (CWR) Checklist. Version 1.16. Nordic Genetic Resource Center (NORDGEN). Sorbus hybrida. https://doi.org/10.15468/itkype
Sennikov, A.; Kurrtto, A. A. (2017). Phylogenetic checklist of Sorbus s.l. (Rosaceae) in Europe. Memoranda Soc Fauna Flora Fennica,93, 1–78. https://www.researchgate.net/publication/317784825_
Fedoronchuk, M. M. (2022). Checklist of flora of Ukraine. 4: Rosaceae family (Rosales, Angiosperms)]. Chornomors’k. bot. z., 18(4), 305–349. https://dx.doi.org/10.32999%2Fksu1990-553X%2F2022-18-4-1
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Oles Honchar Dnipro National University
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).