ITHE INFLUENCE OF POLYETHYLENETEREPHTHALATE SOLID-SATE POLYCONDENSATION ON IT CRYSTALLIZATION AND MOLECULAR WEIGHT INCREASE
DOI:
https://doi.org/10.15421/jchemtech.v32i3.304394Keywords:
Polyethylene terephthalate, solid-state polycondensation, destruction, molecular weight, crystallization, transesterification, esterification, diethylene glycol, acetaldehydeAbstract
This work provides information about the current understanding of polyethylene terephthalate solid-state polycondensation. It presents overall concepts about the mechanism’s polyethylene terephthalate solid-state polycondensation due to it transesterification and esterification reactions under time-temperature dependence. By analyzing a wide range of literature sources, it was found that decreasing the dimensions of polyethylene terephthalate granules/flakes occurs to increase a molecular weight and decrease a degree of crystalinity intense then by using a standard size raw. It was shown that conducting a polyethylene terephthalate solid-state polycondensation under 210 ˚C during 8 h allow to increase it molecular weight more than in 3 times. It has been shown that the increased content of polyethylene terephthalate oligomer derivates with carboxyl group can sighnifilcally increase it solid-state polycondensation quality, but it ratio oligomers with carboxyl and hydroxyl group must be around 2 : 1, correspondly. According to shown data content of diethylene glycol and acetaldehyde can sighnifilcally slow down a polyethylene terephthalate solid-state polycondensation rate.
References
Chen, F.C., Griskey, R.G. and Beyer, G.H. (1969). Thermally induced solid state polycondensation of nylon 66, nylon 6-10 and polyethylene terephthalate. AIChE J., 15, 680–685. https://doi.org/10.1002/aic.690150510
Chang, T.M. (1970). Kinetics of thermally induced solid state polycondensation of poly(ethylene terephthalate). Polym Eng Sci, 10, 364–368. https://doi.org/10.1002/pen.760100610
Chang, S., Sheu, M.-F. and Chen, S.-M. (1983). Solid-state polymerization of poly(ethylene terephthalate). J. Appl. Polym. Sci., 28, 3289–3300. https://doi.org/10.1002/app.1983.070281023
Molnar, B., Ronkay, F. (2019). Effect of solid-state polycondensation on crystalline structure and mechanical properties of recycled polyethylene-terephthalate. Polym. Bull. 76, 2387–2398. https://doi.org/10.1007/s00289-018-2504-x
Saleh, H. E.-D. (Ed.). (2012). Polyester. In Tech Open. doi: 10.5772/2748
Chervakov, D. O., Sukhyy, K. M., Chervakov, V., Sverdlikovska, O. S. (2023). A modern understanding of polyethyleneterephthalate the degradation processes. Journal of Chemistry and Technologies, 31(3), 522–529. https://doi.org/10.15421/jchemtech.v31i3.285240
Celik, Y., Shamsuyeva, M., Endres, H.J. (2022). Thermal and Mechanical Properties of the Recycled and Virgin PET—Part I. Polymers, 14(7), 1326. https://doi.org/10.3390/polym14071326
Kim, T.Y., Lofgren, E.A. and Jabarin, S.A. (2003). Solid-state polymerization of poly(ethylene terephthalate). I. Experimental study of the reaction kinetics and properties. J. Appl. Polym. Sci., 89: 197–212. https://doi.org/10.1002/app.11903
Chen, S.-A. and Chen, F.-L. (1987). Kinetics of polyesterification III: Solid-state polymerization of polyethylene terephthalate. J. Polym. Sci. A Polym. Chem., 25, 533–549. https://doi.org/10.1002/pola.1987.080250208
Chang, T.M. (1970) Kinetics of thermally induced solid state polycondensation of poly(ethylene terephthalate). Polym Eng Sci., 10, 364–368. https://doi.org/10.1002/pen.760100610
Fitaroni, L.B., de Oliveira, É.C., Marcomini, A.L. (2020). Reprocessing and Solid State Polymerization on Contaminated Post-consumer PET: Thermal and Crystallization Behavior. J Polym Environ., 28, 91–99. https://doi.org/10.1007/s10924-019-01579-9
Abigail K. Nason, Ronald T. Jerozal, Phillip J. Milner, and Jin Suntivich.(2023). Reactive crystallization via metal–organic-framework formation enables separation of terephthalic acid from textile impurities. ACS Sustainable Chemistry & Engineering., 11(1), 18–22. doi: 10.1021/acssuschemeng.2c05496
Perez Bravo, J.J.; Gerbehaye, C.; Raquez, J.-M.; Mincheva, R.(2024). Recent Advances in Solid-State Modification for Thermoplastic Polymers: A Comprehensive Review. Molecules, 29, 667.
Viora, L, Combeau, M, Pucci, MF, Perrin, D, Liotier, P-J, Bouvard, J-L, Combeaud, C. A. (2023). Comparative Study on Crystallisation for Virgin and Recycled Polyethylene Terephthalate (PET): Multiscale Effects on Physico-Mechanical Properties. Polymers., 15(23), 4613. https://doi.org/10.3390/polym15234613.
Li, H, Aguirre-Villegas, H.A., Allen, R.D., Bai, X., Benson, C.H., Beckham, G.T. (2022). Expanding Plastics Recycling Technologies: Chemical Aspects, Technology Status and Challenges. ChemRxiv., doi:10.26434/chemrxiv-2022-9wqz0-v2
Dębowski, M., Iuliano, A., Plichta, A., Kowalczyk, S. and Florjańczyk, Z.(2021). Chemical recycling of polyesters. Polimery. 64(11-12), 764–776. https://doi.org/10.14314/polimery.2019.11.5.
Molnar, B., Ronkay, F.(2019). Effect of solid-state polycondensation on crystalline structure and mechanical properties of recycled polyethylene-terephthalate. Polym. Bull., 76, 2387–2398. https://doi.org/10.1007/s00289-018-2504-x
Rimar, M., Chervakov, D., Fedák, M., Kulikov, A., Kulikova, O., Sukhyy, K., Chervakov, Oleh etc. (2023) Solid-phase polycondensation of polyethylene terephthalate with technologies of its reactive extrusion. MM Science Journal. doi:10.17973/MMSJ.2023_10_2023024.
Taha, Z., Ádámné Major, A., Ronkay, F.(2023). Effect of Reprocessing on the Crystallization of Different Polyesters. Acta Technica Jaurinensis., 17. https://doi.org/10.14513/actatechjaur.00723.
Göltner, W. (2004). Solid-State Polycondensation of Polyester Resins: Fundamentals and Industrial Production. In Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters (eds J. Scheirs, J. Scheirs and T.E. Long). https://doi.org/10.1002/0470090685.ch5
Xia, T., Xia, Zh., Liu, T., etc.(2017). Solid state foaming of poly(ethylene terephthalate) based on periodical CO2-renewing sorption process, Chemical Engineering Science, Volume 168, 124–136. https://doi.org/10.1016/j.ces.2017.04.042.
Bocz, K., Molnár, B., Marosi, G. et al.(2019). Preparation of Low-Density Microcellular Foams from Recycled PET Modified by Solid State Polymerization and Chain Extension. J Polym Environ 27, 343–351. https://doi.org/10.1007/s10924-018-1351-z
Jabarin, S.A. (1987). Crystallization kinetics of polyethylene terephthalate. I. Isothermal crystallization from the melt. J. Appl. Polym. Sci., 34: 85–96. https://doi.org/10.1002/app.1987.070340107
Nukui, M. (2000). PET resin development from the Mitsubishi Chemical Company: latest UV barrier polyester resin and heat resistant resin, presentation (Session IX/2–6) given at the Polyester’2000 5th World Congress – The Polyester Chain, Zurich, Switzerland, 28 November–1 December, 2000.
Fortunato, B., Munari, A., Manaresi, P., Monari, P. (1994). Inhibiting effect of phosphorus compounds on model transesterification and direct esterification reactions catalysed by titanium tetrabutylate: 2, Polymer, 35(18), 4006–4010. https://doi.org/10.1016/0032-3861(94)90287-9.
Wufeng Shen, Chaochen Xu, Chao Zeng, Yixiao Yu, Shengming Zhang, Peng Ji, Huaping Wang.(2024). Designing hydrolysis-resistant Ti/Zn bimetallic catalyst based on the coordination activation mechanism to synthesize high molecular weight poly (1,5-pentene terephthalate) (PPeT), Polymer, 298. https://doi.org/10.1016/j.polymer.2024.126875.
Isamu Shigemoto, Tomonori Kawakami, Mitsutaka Okumura.(2013). A quantum chemical study on polymerization catalysts for polyesters: Catalytic performance of chelated complexes of titanium, Polymer,54(13), 3297–3305. https://doi.org/10.1016/j.polymer.2013.04.040.
Jo, M., Kim, Tae.(2018). A Comparison of Antimony in Natural Water with Leaching Concentration from Polyethylene Terephthalate (PET) Bottles. International Journal of Environmental Pollution and Remediation, 25–31. https://doi.org/10.11159/ijepr.2018.003
Al-Otoum, F., Al-Ghouti, M., Ozeas, C., Majeda, K,.(2017). Impact of temperature and storage time on the migration of antimony from polyethylene terephthalate (PET) containers into bottled water in Qatar. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-017-6342-3
Liang-Jie Li, Rong-Tao Duan, Jun-Bo Zhang, Xiu-Li Wang, Li Chen, Yu-Zhong Wang.(2013). Phosphorus-Containing Poly(ethylene terephthalate): Solid-State Polymerization and Its Sequential. Distribution Industrial & Engineering Chemistry Research, 52(15), 5326-5333. https://doi.org/10.1021/ie400224z
Bhatt, G., Filke, L.(2000).Effect of copolymer content on tackiness of PET chips during SSP, presentation given at the Polyester’ 2000 5th World Congress – The Polyester Chain, Zurich, Switzerland, 28 November–1 December, 2000.
Mancini, S., Zanin, M. (1999). Recyclability of PET from virgin resin. Materials Research, 2. https://doi.org/10.1590/S1516-14391999000100006
Joshi, A., Alipourasiabi, N., Vinnakota, K., Coleman, M., Lawrence, J. (2021). Improved polymerization and depolymerization kinetics of poly(ethylene terephthalate) by co-polymerization with 2,5-furandicarboxylic acid. RSC Advances., 11, 1. https://doi.org/23506-23518. 10.1039/D1RA04359E
Nolasco Cruz, J., Donjuan Martínez, K., Álvaro Zavariz, D., Hernández, I. P.(2022). Review of the Thermochemical Degradation of PET: an Alternative Method of Recycling. Journal of Ecological Engineering, 23(9), 319–330. https://doi.org/10.12911/22998993/151766
Göltner, W.(2004). Relationship between Polyester Quality and Processability: Hands-On Experience. In Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters (eds J. Scheirs, J. Scheirs and T.E. Long). https://doi.org/10.1002/0470090685.ch13
Duh, B. US patent 4238593 Dec 9, 1980, IC: C08G 6326; C07D21130.
Culbert, B. and Christel, A.(2004). Continuous Solid-State Polycondensation of Polyesters. In Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters (eds J. Scheirs, J. Scheirs and T.E. Long). https://doi.org/10.1002/0470090685.ch4
Xi, Zhenhao, Liu, Tian ,Si, Wei, Fenglei, bi, Xu, Zhimei, Zhao, Ling. (2018). High-efficiency acetaldehyde removal during solid-state polycondensation of poly(ethylene terephthalate) assisted by supercritical carbon dioxide. Chinese Journal of Chemical Engineering. https://doi.org/26. 10.1016/j.cjche.2018.03.007
Shukla, S.R., Lofgren, E.A. and Jabarin, S.A. (2005), Effects of injection-molding processing parameters on acetaldehyde generation and degradation of poly(ethylene terephthalate). Polym. Int., 54, 946–955. https://doi.org/10.1002/pi.1794
Lucchetta, G., Chirico, S. (2014). Acetaldehyde Generation in Processing PET by Means of Hot Runner Systems. KEM, 611–612, 922–927. https://doi.org/10.4028/www.scientific.net/kem.611-612.922
Mrozinski, B.A., Lofgren, E.A. and Jabarin, S.A. (2012), Acetaldehyde scavengers and their effects on thermal stability and physical properties of poly(ethylene terephthalate). J. Appl. Polym. Sci., 125: 2010–2021. https://doi.org/10.1002/app.36287
Mrozinski, B.A., Kim, Y.-W., Lofgren, E.A. and Jabarin, S.A. (2013), Chemistry of the interactions of acetaldehyde scavengers for poly(ethylene terephthalate). J. Appl. Polym. Sci., 130, 4191–4200. https://doi.org/10.1002/app.39702
Chen S, Xie S, Guang S, Bao J, Zhang X, Chen W.(2020). Crystallization and Thermal Behaviors of Poly(ethylene terephthalate)/Bisphenols Complexes through Melt Post-Polycondensation. Polymers., 12(12), 3053. https://doi.org/10.3390/polym12123053
Ma, J., Yu, L., Chen, S., Chen, W., Wang, Y., Guang, S., Bao, J. (2018). Structure–property evolution of poly (ethylene terephthalate) fibers in industrialized process under complex coupling of stress and temperature field. Macromolecules, 52(2),565–574. https://doi.org/10.1021/acs.macromol.8b01561
Gaonkar, A. A., Murudkar, V. V., Deshpande, V. D. (2020). Comparison of crystallization kinetics of polyethylene terephthalate (PET) and reorganized PET. Thermochimica acta, 683, 178472. https://doi.org/10.1016/j.tca.2019.178472
Li, W., Kong, X., Zhou, E., Ma, D. (2005). Isothermal crystallization kinetics of poly (ethylene terephthalate)–poly (ethylene oxide) segmented copolymer with two crystallizing blocks. Polymer, 46(25), 11655–11663. https://doi.org/10.1016/j.polymer.2005.09.067
Jeziorny, A. (1978). Parameters characterizing the kinetics of the non-isothermal crystallization of poly (ethylene terephthalate) determined by DSC. Polymer, 19(10), 1142–1144. https://doi.org/10.1016/0032-3861(78)90060-5
Zha, L., Hu, W. (2016). Molecular simulations of confined crystallization in the microdomains of diblock copolymers. Progress in Polymer Science, 54, 232–258. https://doi.org/10.1016/j.progpolymsci.2015.10.010
Flores, I., Basterretxea, A., Etxeberria, A., González, A., Ocando, C., Vega, J. F., & Müller, A. J. (2019). Organocatalyzed polymerization of PET-mb-poly (oxyhexane) copolymers and their self-assembly into double crystalline superstructures. Macromolecules, 52(18), 6834–6848. https://doi.org/10.1021/acs.macromol.9b01110
Shinotsuka, K., Bliznyuk, V. N., Assender, H. E. (2012). Near-surface crystallization of PET. Polymer, 53(24), 5554–5559. https://doi.org/10.1016/j.polymer.2012.09.048
Lu, X. F., Hay, J. N. (2001). Isothermal crystallization kinetics and melting behaviour of poly (ethylene terephthalate). Polymer, 42(23), 9423–9431. https://doi.org/10.1016/S0032-3861(01)00502-X
Ghasemi, H., Carreau, P. J., & Kamal, M. R. (2012). Isothermal and non‐isothermal crystallization behavior of PET nanocomposites. Polymer Engineering & Science, 52(2), 372-384. https://doi.org/10.1002/pen.22092
Jabarin, S. A. (1987). Crystallization kinetics of polyethylene terephthalate. II. Dynamic crystallization of PET. Journal of applied polymer science, 34(1), 97-102. https://doi.org/10.1002/app.1987.070340108
Dangseeyun, N., Srimoaon, P., Supaphol, P., Nithitanakul, M. (2004). Isothermal melt-crystallization and melting behavior for three linear aromatic polyesters. Thermochimica Acta, 409(1), 63–77. https://doi.org/10.1016/S0040-6031(03)00331-9
Ziyu Сhen. (2012) The crystallization of poly(ethylene terephthalate) studied by thermal analysis and ftir spectroscopy, a thesis submitted to the University of Birmingham for the degree of Doctor of Philosophy.
Itoyama, K. (1987). Structure and properties of poly (ethylene terephthalate) crystallized by prolonged annealing in the highly oriented state. Journal of Polymer Science Part C: Polymer Letters, 25(8), 331–338. https://doi.org/10.1016/0032-3861(77)90105-7
Canetti, M., Bertini, F. (2010). Crystalline and supermolecular structure evolution of poly (ethylene terephthalate) during isothermal crystallization and annealing treatment by means of wide and small angle X-ray investigations. European polymer journal, 46(2), 270–276. https://doi.org/10.1016/j.eurpolymj.2009.10.019
Groeninckx, G., & Reynaers, H. (1980). Morphology and melting behavior of semicrystalline poly (ethylene terephthalate). II. Annealed PET. Journal of Polymer Science: Polymer Physics Edition, 18(6), 1325–1341. https://doi.org/10.1002/pol.1980.180180612
Girard, M., Combeaud, C., Billon, N. (2021). Effects of annealing prior to stretching on strain induced crystallization of polyethylene terephthalate. Polymer, 230, 124078. https://doi.org/10.1016/j.polymer.2021.124078
Thomsen, T. B., Hunt, C. J., Meyer, A. S. (2022). Standardized method for controlled modification of poly (ethylene terephthalate)(PET) crystallinity for assaying PET degrading enzymes. MethodsX, 9, 101815. https://doi.org/10.1016/j.mex.2022.101815
Xu, D., Wang, H., & Bin, Y. (2021). The investigation of the growth and perfection of the poly (ethylene terephthalate) crystalline region from amorphous state during annealing using a controlled temperature gradient. Polymer Crystallization, 4(3), e10178. https://doi.org/10.1002/pcr2.10178
Sun, L., Huang, L., Wang, X., Hu, H., Guo, J., Zhu, R., He, S. (2020). Synthesis and structural characterization of sequential structure and crystallization properties for hydrophilic modified polyester. Polymers, 12(8), 1733. https://doi.org/10.3390/polym12081733
Aguado, A., Becerra, L., & Martínez, L. (2023). Glycolysis optimisation of different complex PET waste with recovery and reuse of ethylene glycol. Chemical Papers, 77(6), 3293–3303. https://doi.org/10.1007/s11696-023-02704-8
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Oles Honchar Dnipro National University
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).