ITHE INFLUENCE OF POLYETHYLENETEREPHTHALATE SOLID-SATE POLYCONDENSATION ON IT CRYSTALLIZATION AND MOLECULAR WEIGHT INCREASE

Authors

DOI:

https://doi.org/10.15421/jchemtech.v32i3.304394

Keywords:

Polyethylene terephthalate, solid-state polycondensation, destruction, molecular weight, crystallization, transesterification, esterification, diethylene glycol, acetaldehyde

Abstract

This work provides information about the current understanding of polyethylene terephthalate solid-state polycondensation. It presents overall concepts about the mechanism’s polyethylene terephthalate solid-state polycondensation due to it transesterification and esterification reactions under time-temperature dependence. By analyzing a wide range of literature sources, it was found that decreasing the dimensions of polyethylene terephthalate granules/flakes occurs to increase a molecular weight and decrease a degree of crystalinity intense then by using a standard size raw. It was shown that conducting a polyethylene terephthalate solid-state polycondensation under 210 ˚C during 8 h allow to increase it molecular weight more than in 3 times. It has been shown that the increased content of polyethylene terephthalate oligomer derivates with carboxyl group can sighnifilcally increase it solid-state polycondensation quality, but it ratio oligomers with carboxyl and hydroxyl group must be around 2 : 1, correspondly. According to shown data content of diethylene glycol and acetaldehyde can sighnifilcally slow down a polyethylene terephthalate solid-state polycondensation rate.

References

Chen, F.C., Griskey, R.G. and Beyer, G.H. (1969). Thermally induced solid state polycondensation of nylon 66, nylon 6-10 and polyethylene terephthalate. AIChE J., 15, 680–685. https://doi.org/10.1002/aic.690150510

Chang, T.M. (1970). Kinetics of thermally induced solid state polycondensation of poly(ethylene terephthalate). Polym Eng Sci, 10, 364–368. https://doi.org/10.1002/pen.760100610

Chang, S., Sheu, M.-F. and Chen, S.-M. (1983). Solid-state polymerization of poly(ethylene terephthalate). J. Appl. Polym. Sci., 28, 3289–3300. https://doi.org/10.1002/app.1983.070281023

Molnar, B., Ronkay, F. (2019). Effect of solid-state polycondensation on crystalline structure and mechanical properties of recycled polyethylene-terephthalate. Polym. Bull. 76, 2387–2398. https://doi.org/10.1007/s00289-018-2504-x

Saleh, H. E.-D. (Ed.). (2012). Polyester. In Tech Open. doi: 10.5772/2748

Chervakov, D. O., Sukhyy, K. M., Chervakov, V., Sverdlikovska, O. S. (2023). A modern understanding of polyethyleneterephthalate the degradation processes. Journal of Chemistry and Technologies, 31(3), 522–529. https://doi.org/10.15421/jchemtech.v31i3.285240

Celik, Y., Shamsuyeva, M., Endres, H.J. (2022). Thermal and Mechanical Properties of the Recycled and Virgin PET—Part I. Polymers, 14(7), 1326. https://doi.org/10.3390/polym14071326

Kim, T.Y., Lofgren, E.A. and Jabarin, S.A. (2003). Solid-state polymerization of poly(ethylene terephthalate). I. Experimental study of the reaction kinetics and properties. J. Appl. Polym. Sci., 89: 197–212. https://doi.org/10.1002/app.11903

Chen, S.-A. and Chen, F.-L. (1987). Kinetics of polyesterification III: Solid-state polymerization of polyethylene terephthalate. J. Polym. Sci. A Polym. Chem., 25, 533–549. https://doi.org/10.1002/pola.1987.080250208

Chang, T.M. (1970) Kinetics of thermally induced solid state polycondensation of poly(ethylene terephthalate). Polym Eng Sci., 10, 364–368. https://doi.org/10.1002/pen.760100610

Fitaroni, L.B., de Oliveira, É.C., Marcomini, A.L. (2020). Reprocessing and Solid State Polymerization on Contaminated Post-consumer PET: Thermal and Crystallization Behavior. J Polym Environ., 28, 91–99. https://doi.org/10.1007/s10924-019-01579-9

Abigail K. Nason, Ronald T. Jerozal, Phillip J. Milner, and Jin Suntivich.(2023). Reactive crystallization via metal–organic-framework formation enables separation of terephthalic acid from textile impurities. ACS Sustainable Chemistry & Engineering., 11(1), 18–22. doi: 10.1021/acssuschemeng.2c05496

Perez Bravo, J.J.; Gerbehaye, C.; Raquez, J.-M.; Mincheva, R.(2024). Recent Advances in Solid-State Modification for Thermoplastic Polymers: A Comprehensive Review. Molecules, 29, 667.

Viora, L, Combeau, M, Pucci, MF, Perrin, D, Liotier, P-J, Bouvard, J-L, Combeaud, C. A. (2023). Comparative Study on Crystallisation for Virgin and Recycled Polyethylene Terephthalate (PET): Multiscale Effects on Physico-Mechanical Properties. Polymers., 15(23), 4613. https://doi.org/10.3390/polym15234613.

Li, H, Aguirre-Villegas, H.A., Allen, R.D., Bai, X., Benson, C.H., Beckham, G.T. (2022). Expanding Plastics Recycling Technologies: Chemical Aspects, Technology Status and Challenges. ChemRxiv., doi:10.26434/chemrxiv-2022-9wqz0-v2

Dębowski, M., Iuliano, A., Plichta, A., Kowalczyk, S. and Florjańczyk, Z.(2021). Chemical recycling of polyesters. Polimery. 64(11-12), 764–776. https://doi.org/10.14314/polimery.2019.11.5.

Molnar, B., Ronkay, F.(2019). Effect of solid-state polycondensation on crystalline structure and mechanical properties of recycled polyethylene-terephthalate. Polym. Bull., 76, 2387–2398. https://doi.org/10.1007/s00289-018-2504-x

Rimar, M., Chervakov, D., Fedák, M., Kulikov, A., Kulikova, O., Sukhyy, K., Chervakov, Oleh etc. (2023) Solid-phase polycondensation of polyethylene terephthalate with technologies of its reactive extrusion. MM Science Journal. doi:10.17973/MMSJ.2023_10_2023024.

Taha, Z., Ádámné Major, A., Ronkay, F.(2023). Effect of Reprocessing on the Crystallization of Different Polyesters. Acta Technica Jaurinensis., 17. https://doi.org/10.14513/actatechjaur.00723.

Göltner, W. (2004). Solid-State Polycondensation of Polyester Resins: Fundamentals and Industrial Production. In Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters (eds J. Scheirs, J. Scheirs and T.E. Long). https://doi.org/10.1002/0470090685.ch5

Xia, T., Xia, Zh., Liu, T., etc.(2017). Solid state foaming of poly(ethylene terephthalate) based on periodical CO2-renewing sorption process, Chemical Engineering Science, Volume 168, 124–136. https://doi.org/10.1016/j.ces.2017.04.042.

Bocz, K., Molnár, B., Marosi, G. et al.(2019). Preparation of Low-Density Microcellular Foams from Recycled PET Modified by Solid State Polymerization and Chain Extension. J Polym Environ 27, 343–351. https://doi.org/10.1007/s10924-018-1351-z

Jabarin, S.A. (1987). Crystallization kinetics of polyethylene terephthalate. I. Isothermal crystallization from the melt. J. Appl. Polym. Sci., 34: 85–96. https://doi.org/10.1002/app.1987.070340107

Nukui, M. (2000). PET resin development from the Mitsubishi Chemical Company: latest UV barrier polyester resin and heat resistant resin, presentation (Session IX/2–6) given at the Polyester’2000 5th World Congress – The Polyester Chain, Zurich, Switzerland, 28 November–1 December, 2000.

Fortunato, B., Munari, A., Manaresi, P., Monari, P. (1994). Inhibiting effect of phosphorus compounds on model transesterification and direct esterification reactions catalysed by titanium tetrabutylate: 2, Polymer, 35(18), 4006–4010. https://doi.org/10.1016/0032-3861(94)90287-9.

Wufeng Shen, Chaochen Xu, Chao Zeng, Yixiao Yu, Shengming Zhang, Peng Ji, Huaping Wang.(2024). Designing hydrolysis-resistant Ti/Zn bimetallic catalyst based on the coordination activation mechanism to synthesize high molecular weight poly (1,5-pentene terephthalate) (PPeT), Polymer, 298. https://doi.org/10.1016/j.polymer.2024.126875.

Isamu Shigemoto, Tomonori Kawakami, Mitsutaka Okumura.(2013). A quantum chemical study on polymerization catalysts for polyesters: Catalytic performance of chelated complexes of titanium, Polymer,54(13), 3297–3305. https://doi.org/10.1016/j.polymer.2013.04.040.

Jo, M., Kim, Tae.(2018). A Comparison of Antimony in Natural Water with Leaching Concentration from Polyethylene Terephthalate (PET) Bottles. International Journal of Environmental Pollution and Remediation, 25–31. https://doi.org/10.11159/ijepr.2018.003

Al-Otoum, F., Al-Ghouti, M., Ozeas, C., Majeda, K,.(2017). Impact of temperature and storage time on the migration of antimony from polyethylene terephthalate (PET) containers into bottled water in Qatar. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-017-6342-3

Liang-Jie Li, Rong-Tao Duan, Jun-Bo Zhang, Xiu-Li Wang, Li Chen, Yu-Zhong Wang.(2013). Phosphorus-Containing Poly(ethylene terephthalate): Solid-State Polymerization and Its Sequential. Distribution Industrial & Engineering Chemistry Research, 52(15), 5326-5333. https://doi.org/10.1021/ie400224z

Bhatt, G., Filke, L.(2000).Effect of copolymer content on tackiness of PET chips during SSP, presentation given at the Polyester’ 2000 5th World Congress – The Polyester Chain, Zurich, Switzerland, 28 November–1 December, 2000.

Mancini, S., Zanin, M. (1999). Recyclability of PET from virgin resin. Materials Research, 2. https://doi.org/10.1590/S1516-14391999000100006

Joshi, A., Alipourasiabi, N., Vinnakota, K., Coleman, M., Lawrence, J. (2021). Improved polymerization and depolymerization kinetics of poly(ethylene terephthalate) by co-polymerization with 2,5-furandicarboxylic acid. RSC Advances., 11, 1. https://doi.org/23506-23518. 10.1039/D1RA04359E

Nolasco Cruz, J., Donjuan Martínez, K., Álvaro Zavariz, D., Hernández, I. P.(2022). Review of the Thermochemical Degradation of PET: an Alternative Method of Recycling. Journal of Ecological Engineering, 23(9), 319–330. https://doi.org/10.12911/22998993/151766

Göltner, W.(2004). Relationship between Polyester Quality and Processability: Hands-On Experience. In Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters (eds J. Scheirs, J. Scheirs and T.E. Long). https://doi.org/10.1002/0470090685.ch13

Duh, B. US patent 4238593 Dec 9, 1980, IC: C08G 6326; C07D21130.

Culbert, B. and Christel, A.(2004). Continuous Solid-State Polycondensation of Polyesters. In Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters (eds J. Scheirs, J. Scheirs and T.E. Long). https://doi.org/10.1002/0470090685.ch4

Xi, Zhenhao, Liu, Tian ,Si, Wei, Fenglei, bi, Xu, Zhimei, Zhao, Ling. (2018). High-efficiency acetaldehyde removal during solid-state polycondensation of poly(ethylene terephthalate) assisted by supercritical carbon dioxide. Chinese Journal of Chemical Engineering. https://doi.org/26. 10.1016/j.cjche.2018.03.007

Shukla, S.R., Lofgren, E.A. and Jabarin, S.A. (2005), Effects of injection-molding processing parameters on acetaldehyde generation and degradation of poly(ethylene terephthalate). Polym. Int., 54, 946–955. https://doi.org/10.1002/pi.1794

Lucchetta, G., Chirico, S. (2014). Acetaldehyde Generation in Processing PET by Means of Hot Runner Systems. KEM, 611–612, 922–927. https://doi.org/10.4028/www.scientific.net/kem.611-612.922

Mrozinski, B.A., Lofgren, E.A. and Jabarin, S.A. (2012), Acetaldehyde scavengers and their effects on thermal stability and physical properties of poly(ethylene terephthalate). J. Appl. Polym. Sci., 125: 2010–2021. https://doi.org/10.1002/app.36287

Mrozinski, B.A., Kim, Y.-W., Lofgren, E.A. and Jabarin, S.A. (2013), Chemistry of the interactions of acetaldehyde scavengers for poly(ethylene terephthalate). J. Appl. Polym. Sci., 130, 4191–4200. https://doi.org/10.1002/app.39702

Chen S, Xie S, Guang S, Bao J, Zhang X, Chen W.(2020). Crystallization and Thermal Behaviors of Poly(ethylene terephthalate)/Bisphenols Complexes through Melt Post-Polycondensation. Polymers., 12(12), 3053. https://doi.org/10.3390/polym12123053

Ma, J., Yu, L., Chen, S., Chen, W., Wang, Y., Guang, S., Bao, J. (2018). Structure–property evolution of poly (ethylene terephthalate) fibers in industrialized process under complex coupling of stress and temperature field. Macromolecules, 52(2),565–574. https://doi.org/10.1021/acs.macromol.8b01561

Gaonkar, A. A., Murudkar, V. V., Deshpande, V. D. (2020). Comparison of crystallization kinetics of polyethylene terephthalate (PET) and reorganized PET. Thermochimica acta, 683, 178472. https://doi.org/10.1016/j.tca.2019.178472

Li, W., Kong, X., Zhou, E., Ma, D. (2005). Isothermal crystallization kinetics of poly (ethylene terephthalate)–poly (ethylene oxide) segmented copolymer with two crystallizing blocks. Polymer, 46(25), 11655–11663. https://doi.org/10.1016/j.polymer.2005.09.067

Jeziorny, A. (1978). Parameters characterizing the kinetics of the non-isothermal crystallization of poly (ethylene terephthalate) determined by DSC. Polymer, 19(10), 1142–1144. https://doi.org/10.1016/0032-3861(78)90060-5

Zha, L., Hu, W. (2016). Molecular simulations of confined crystallization in the microdomains of diblock copolymers. Progress in Polymer Science, 54, 232–258. https://doi.org/10.1016/j.progpolymsci.2015.10.010

Flores, I., Basterretxea, A., Etxeberria, A., González, A., Ocando, C., Vega, J. F., & Müller, A. J. (2019). Organocatalyzed polymerization of PET-mb-poly (oxyhexane) copolymers and their self-assembly into double crystalline superstructures. Macromolecules, 52(18), 6834–6848. https://doi.org/10.1021/acs.macromol.9b01110

Shinotsuka, K., Bliznyuk, V. N., Assender, H. E. (2012). Near-surface crystallization of PET. Polymer, 53(24), 5554–5559. https://doi.org/10.1016/j.polymer.2012.09.048

Lu, X. F., Hay, J. N. (2001). Isothermal crystallization kinetics and melting behaviour of poly (ethylene terephthalate). Polymer, 42(23), 9423–9431. https://doi.org/10.1016/S0032-3861(01)00502-X

Ghasemi, H., Carreau, P. J., & Kamal, M. R. (2012). Isothermal and non‐isothermal crystallization behavior of PET nanocomposites. Polymer Engineering & Science, 52(2), 372-384. https://doi.org/10.1002/pen.22092

Jabarin, S. A. (1987). Crystallization kinetics of polyethylene terephthalate. II. Dynamic crystallization of PET. Journal of applied polymer science, 34(1), 97-102. https://doi.org/10.1002/app.1987.070340108

Dangseeyun, N., Srimoaon, P., Supaphol, P., Nithitanakul, M. (2004). Isothermal melt-crystallization and melting behavior for three linear aromatic polyesters. Thermochimica Acta, 409(1), 63–77. https://doi.org/10.1016/S0040-6031(03)00331-9

Ziyu Сhen. (2012) The crystallization of poly(ethylene terephthalate) studied by thermal analysis and ftir spectroscopy, a thesis submitted to the University of Birmingham for the degree of Doctor of Philosophy.

Itoyama, K. (1987). Structure and properties of poly (ethylene terephthalate) crystallized by prolonged annealing in the highly oriented state. Journal of Polymer Science Part C: Polymer Letters, 25(8), 331–338. https://doi.org/10.1016/0032-3861(77)90105-7

Canetti, M., Bertini, F. (2010). Crystalline and supermolecular structure evolution of poly (ethylene terephthalate) during isothermal crystallization and annealing treatment by means of wide and small angle X-ray investigations. European polymer journal, 46(2), 270–276. https://doi.org/10.1016/j.eurpolymj.2009.10.019

Groeninckx, G., & Reynaers, H. (1980). Morphology and melting behavior of semicrystalline poly (ethylene terephthalate). II. Annealed PET. Journal of Polymer Science: Polymer Physics Edition, 18(6), 1325–1341. https://doi.org/10.1002/pol.1980.180180612

Girard, M., Combeaud, C., Billon, N. (2021). Effects of annealing prior to stretching on strain induced crystallization of polyethylene terephthalate. Polymer, 230, 124078. https://doi.org/10.1016/j.polymer.2021.124078

Thomsen, T. B., Hunt, C. J., Meyer, A. S. (2022). Standardized method for controlled modification of poly (ethylene terephthalate)(PET) crystallinity for assaying PET degrading enzymes. MethodsX, 9, 101815. https://doi.org/10.1016/j.mex.2022.101815

Xu, D., Wang, H., & Bin, Y. (2021). The investigation of the growth and perfection of the poly (ethylene terephthalate) crystalline region from amorphous state during annealing using a controlled temperature gradient. Polymer Crystallization, 4(3), e10178. https://doi.org/10.1002/pcr2.10178

Sun, L., Huang, L., Wang, X., Hu, H., Guo, J., Zhu, R., He, S. (2020). Synthesis and structural characterization of sequential structure and crystallization properties for hydrophilic modified polyester. Polymers, 12(8), 1733. https://doi.org/10.3390/polym12081733

Aguado, A., Becerra, L., & Martínez, L. (2023). Glycolysis optimisation of different complex PET waste with recovery and reuse of ethylene glycol. Chemical Papers, 77(6), 3293–3303. https://doi.org/10.1007/s11696-023-02704-8

Published

2024-10-20