TECHNOLOGICAL RECOMMENDATIONS FOR THE PRODUCTION OF HYDROXYLAMMONIUM NITRATE

Authors

DOI:

https://doi.org/10.15421/jchemtech.v32i3.304725

Keywords:

liquid fuel, main propellant component, technology of obtaining, properties, purity analysis, storage, hydroxylammonium nitrate

Abstract

The article presents the results of a comparative analysis of possible methods for obtaining a promising highly effective component for liquid, paste and solid “green” rocket fuels - hydroxylammonium nitrate (NH3OH)NO3 (HAN), which is not only safer, but also more efficient and environmentally friendly, since during its combustion mainly non-toxic gases such as water vapor, molecular nitrogen and carbon dioxide are released. The technology for obtaining the target product HAN by a simple exchange reaction of salts of hydroxylammonium sulfate and metal nitrate with the formation of the target product and an insoluble salt, metal sulfate, as a by-product has been studied. The feasibility of using this reaction as an accessible, cheap, non-toxic and non-carcinogenic raw material component is shown, ensuring high efficiency of the technological process due to low energy costs when drying HAN solutions, low yield of the by-product (calcium sulfate) and the possibility of its regeneration into the original calcium nitrate at high yield and purity of the target product.

References

Sutton, G. P. (2006). History of Liquid Propellant Rocket Engines. AIAA, 303‒530. https://doi.org/10.2514/4.868870

Bangalore Venkatesh, P., Meyer, S. E., Bane, S. P., Grubelich, M. C. (2019). Deflagration-to-detonation transition in nitrous oxide/oxygen-fuel mixtures for propulsion. Journal of Propulsion and Power, 35(5), 944–952. https://doi.org/10.2514/1.B37391

Remissa, I., Jabri, H., Hairch, Y., Toshtay, K., Atamanov, M., Azat, S., Amrousse, R. (2023). Propulsion Systems, Propellants, Green Propulsion Subsystems and their Applications: A Review. Eurasian Chemico-Technological Journal, 25(1), 3–19. https://doi.org/10.18321/ectj1491

Hui, A., Jinyi, L., Lujun, Y., Shengxue, L., Yanhong, Z., Huan, Y., Qingjun, J., Zhihong, C., Jia, C. (2008). Acute and subchronic toxicity of hydroxylammonium nitrate in Wistar rats. Journal of Medical Colleges of PLA, 23(3), 137‒147. https://doi.org/10.1016/S1000-1948(08)60035-0

Sam, I. I., Gayathri, S., Santhosh, G., Cyriac, J., Reshmi, S. (2022). Exploring the possibilities of energetic ionic liquids as non-toxic hypergolic bipropellants in liquid rocket engines. Journal of Molecular Liquids, 350, 118–217. https://doi.org/10.1016/j.molliq.2021.118217

Kang, L., Liu, J., Yao, Y., Wu, X., Zhang, J., Zhu, C.G., Xu, F., Xu, S. (2023). Enhancing risk/safety management of HAN-based liquid propellant as a green space propulsion fuel: A study of its hazardous characteristics. Process Saf. Environ. Prot., 177, 921–931. https://doi.org/10.1016/j.psep.2023.07.054

Abdelaziz, A., Trache, D., Tarchoun, A. F., Boukeciat, H., Kadri, D. E., Hassam, H., .Klapötke, T. M. (2024). Application of co-crystallization method for the production of ammonium perchlorate/ammonium nitrate oxidizer for solid rocket propellants. Chemical Engineering Journal, 487, 150654. https://doi.org/10.1016/j.cej.2024.150654

Chai, W. S., Cheah, K. H., Wu, M. H., Koh, K. S., Sun, D., Meng, H. (2022). A review on hydroxylammonium nitrate (HAN) decomposition techniques for propulsion application. Acta Astronautica, 196, 194–214. https://doi.org/10.1016/j.actaastro.2022.04.011

Amrousse, R., Katsumi, T., Itouyama, N., Azuma, N., Kagawa, H., Hatai, K., Ikeda, H., Hori, K. (2015). New HAN-based mixtures for reaction control system and low toxic spacecraft propulsion subsystem: Thermal decomposition and possible thruster applications. Combustion and Flame, 162(6), 2686‒2692. https://doi.org /10.1016/j.combustflame.2015.03.026

Amrousse, R., Katsumi, T., Azuma, N., Hori, K. (2017). Hydroxylammonium nitrate (HAN)-based green propellant as alternative energy resource for potential hydrazine substitution: From lab scale to pilot plant scale-up. Combustion and Flame, 176, 334‒348. https://doi.org/10.1016/j.combustflame.2016.11.011

Masse, R. K., Spores, R., Allen, M. (2020). AF-M315E advanced green propulsion–GPIM and beyond. In AIAA Propulsion and Energy 2020 Forum, 3517. https://doi.org/10.2514/6.2020-3517

Nosseir, A.E.S., Cervone, A., Pasini, A. (2021). Review of state-of-the-art green monopropellants: For propulsion systems analysts and designers. Aerospace, 8(1), 20. https://doi.org/10.3390/aerospace8010020

Li, F., Wang, Z., Zhang, Q., Cheng, Z., Yu, Y., Shen, R., Ye, Y., DeLuca, L. T., Zhang, W. (2024). Tuning combustion and energy in hydroxylammonium nitrate (HAN)-based electrically controlled solid propellant. Chemical Engineering Journal, 487, 150562. https://doi.org/10.1016/j.cej.2024.150562

Sun, D. C., Xiang, W. B. (2019). Simplified numerical simulation model for hydroxyl ammonium nitrate-based monopropellant rocket engines. Aerospace Science and Technology, 95, 105474. https://doi.org/10.1016/j.ast.2019.105474

Esparza, A. A., Ferguson, R. E., Choudhuri, A., Love, N. D., Shafirovich, E. (2018). Thermoanalytical studies on the thermal and catalytic decomposition of aqueous hydroxylammonium nitrate solution. Combustion and Flame, 193, 417–423. https://doi.org/10.1016/j.combustflame.2018.04.007

Broemmelsiek, E. J., Rovey, J. L., Berg, S. P. (2021). Effect of metal sequestrants on the decomposition of hydroxylammonium nitrate. Catalysts, 11(12), 1488. https://doi.org/10.3390/catal11121488

Gross, P., Smith, R. P. (1985). Biologic activity of hydroxylamine: a review. CRC critical reviews in toxicology, 14(1), 87–99. https://doi.org/10.3109/10408448509023765

Chambreau, S. D., Popolan-Vaida, D. M., Vaghjiani, G. L., Leone, S. R. (2017). Catalytic decomposition of hydroxylammonium nitrate ionic liquid: enhancement of NO formation. J. Phys. Chem. Lett., 8(10), 2126–2130. https://doi.org/10.1021/acs.jpclett.7b00672

Baird, J. K., Huang, S., Frederick Jr. R. A. (2020). Space charge limited conduction in polyvinyl alcohol+ hydroxylammonium nitrate solid propellant. Journal of Propulsion and Power, 36(3), 479–484. https://doi.org/10.2514/1.B37573

Coates, J. (2000). Interpretation of infrared spectra, a practical approach. In Encyclopedia of analytical chemistry, R.A. Meyers (Ed.), Vol. 12,. Wiley & Sons Ltd: Hoboken, NJ, USA.

Cawlfield, D. W. (1993). U.S. Patent No. 5,213,784. Washington, DC: U.S. Patent and Trademark Office.

Yoo, D., Kim, M., Oh, S. K., Hwang, S., Kim, S., Kim, W., Kwon, Y., Jo, Y., Jeon, J. K. (2024). Synthesis of Hydroxylammonium Nitrate and Its Decomposition over Metal Oxide/Honeycomb Catalysts. Catalysts, 14(2), 116‒132. https://doi.org/10.3390/catal14020116

Sadergaski, L. R., Hager, T. J., Andrews, H. B. (2022). Design of experiments, chemometrics, and Raman spectroscopy for the quantification of hydroxylammonium, nitrate, and nitric acid. ACS omega, 7(8), 7287–7296. https://doi.org/10.1021/acsomega.1c07111

Sun, D., Dai Q., Chai , W. S., Fang, W., Meng, H. (2022). Experimental Studies on Parametric Effects and Reaction Mechanisms n Electrolytic Decomposition and Ignition of HAN Solutions. ACS Omega, 7(22), 18521–18530. https://doi.org/10.1021/acsomega.2c01183

Liggett, T. (1978). U.S. Patent No. 4,066,736. Washington, DC: U.S. Patent and Trademark Office.

Liggett, T. (1993). U.S. Patent No. 5,182,092. Washington, DC: U.S. Patent and Trademark Office.

Kartashov, J. I., L'vov O. N., Novikov, I. Ryzhkin Ju. S., Spilioti, M. N. (2015). Russia Patent No. 2561372 (С1). Saint Petersburg, Russia. Federal state unitary enterprise "Russian Scientific Center "Applied chemistry".

Kondrikov B. N., Annikov V. É., Egorshev V. Yu., De Luca L. T. (2000). Burning of hydroxylammonium nitrate. Combustion, Explosion and Shock Waves, 36(1), 135-145. https://doi.org/10.1007/bf02701522

Fuchs, H., Weiss F.-J., Thomas, E., Neubauer, G., Ritz, J. (1987). Process for the preparation of hydroxylammonium nitrate. Germany Patent No 3528760 (A1). Ludwigshafen, Germany. BASF Societas Europaea.

Published

2024-10-20