EVALUATION OF THE CHEMICAL COMPOSITION, ANTIOXIDANT CAPACITY, AND ANTIBACTERIAL ACTIVITY OF ESSENTIAL OIL FROM MANDARIN PEELS (CITRUS RETICULATA L.) GROWN IN DONG THAP PROVINCE, VIETNAM
DOI:
https://doi.org/10.15421/jchemtech.v33i1.308775Keywords:
antibacterial activity, antioxidant capacity, oil, physicochemical propertiesAbstract
Citrus reticulata L. essential oil (CrEO) is widely used in food technology, cosmetics, and pharmaceuticals due to its distinct aroma and bioactive properties. In this study, Citrus reticulata L. was collected in Dong Thap province, Vietnam and its peel essential oil was extracted through distillation. Several physicochemical properties of the oil were analyzed, including acid, saponification, and ester values, as well as relative and absolute density, freezing point, and fragrance retention. The results showed that CrEO exhibited an acid value of 0.748 mg KOH/g, a saponification value of 67.320 mg KOH/g, and an ester value of 66.572 mg KOH/g, with fragrance retention lasting over 33 h. The chemical composition of CrEO was determined by gas chromatography-mass spectrometry (GC-MS), and the results revealed six main components namely α-Pinene (0.93 %), β-Pinene (0.61 %), β-Myrcene (1.88 %), D-Limonene (96.09 %), Linalool (0.16 %), and α-Terpineol (0.33 %), which are monoterpenes. Furthermore, the study showed the weak antioxidant capacity of oil and strong antibacterial activities against pathogenic bacteria were determined using the paper disc diffusion method.
References
Turan, M., Mammadov, R. (2021). Overview of characteristics of the Citrus genus. In: Cig, A. (Eds). Overview on Horticulture. IKSAD Publishing House: Ankara, Turkey, p. 31-64.
Bora, H., Kamle, M., Mahato, D. K, Tiwari, P., Kumar, P. (2020). Citrus essential oils (CEOs) and their applications in food: An overview. Plants, 9(3), 357. https://dx.doi.org/10.3390/9030357
Brah, A. S., Armah, F. A., Obuah, C., Akwetey, S. A., Adokoh, C. K. (2023). Toxicity and therapeutic applications of citrus essential oils (CEOs): A review. Int. J. Food Prop., 26(1), 301–326. https://dx.doi.org/10.1080/10942912.2022.2158864
Aziz, Z. A. A., Ahmad, A., Setapar, S. H. M., Karakucuk, A., Azim, M. M., Lokhat, D., Rafatullah, M., Ganash, M., Kamal, M. A., Ashraf, G. M. (2018). Essential oils: extraction techniques, pharmaceutical and therapeutic potential - A review. Curr. Drug Metab., 19(13), 1100–1110. https://dx.doi.org/10.2174/1389200219666180723144850
Reyes-Jurado, F., Franco-Vega, A., Ramírez-Corona, N., Palou, E., López-Malo, A. (2015). Essential oils: antimicrobial activities, extraction methods, and their modeling. Food Eng. Rev., 7, 275–297. https://dx.doi.org/10.1007/s12393-014-9099-2
Kamaliroosta, L., Zolfaghari, M., Shafiee, S., Larijani, K., Zojaji, M. (2016). Chemical identifications of Citrus peels essential oils. J. Food Biosci. Technol., 6(2), 69–76.
ISO 1242. (1999). Essential oils - Determine of acid value. International Organization for Standardization, Geneva, Switzerland.
ISO 3657. (2023). Animal and vegetable fats and oils - Determination of saponification value. International Organization for Standardization, Geneva, Switzerland.
ISO 279. (1998). Essential oils - Determination of relative density at 20oC. International Organization for Standardization, Geneva, Switzerland.
ISO 1041. (1973). Essential oils - Determination of freezing point. International Organization for Standardization, Geneva, Switzerland.
ISO 280. (1998). Essential oils - Determination of refractive index. International Organization for Standardization, Geneva, Switzerland.
Mahajan, V. K. (2022). Perfumes and associatedallergens: A brief review. CosmoDerma, 2(21), 1–12. https://dx.doi.org/10.25259/CSDM_9_2022
Hao, P. M., Quoc, L. P. T. (2024). Chemical profile and antimicrobial activity of Ocimum gratissimum L. essential oil from Dak Lak province, VietNam. J. Plant Biotechnol., 51(1), 50–54. https://dx.doi.org/10.5010/JPB.2024.51.005.050
Gounder, D. K., Lingamallu, J. (2012). Comparison of chemical composition and antioxidant potential of volatile oil from fresh, dried and cured turmeric (Curcuma longa) rhizomes. Ind. Crops Prod., 38, 124–131. https://dx.doi.org/10.1016/j.indcrop.2012.01.014
Hindler, J. F., Munro, S. (2010). Antimicrobial susceptibility testing. In: Garcia, L, S., Isenberg, H.D. Clinical Microbiology Procedures Handbook. John Wiley and Sons: CA, USA, p. 5.0.1–5.18.2.1.
Bỉnh, B. T., Lợi, V. B., Mai, H. T., Liễu, T. T. N., Thỏa, N. T. H. (2019). Nghiên cứu thành phần hóa học của tinh dầu chúc (Citrus hystrix). Tạp chí Khoa học và Công nghệ ngành Công thương, 38, 60–64. (in Vietnamese).
Oikeh, E. I. (2014). Phenolic content and in vitro antioxidant activities of sweet orange (Citrus sinensis L.) fruit wastes. Arch. Basic Appl. Med., 2(2), 119–126.
Aruna, T., Hemalatha, G., Kumutha, K., Kanchana, S., Vellaikumar, S. (2022). Physicochemical, antioxidant and antimicrobial properties of citrus peel essential oils. J. Appl. Nat. Sci., 14(2), 640–646. https://dx.doi.org/10.31018/jans.v14i2.3484
Hiếu, T. H., Trân, N. T. T., Thạch, L. N. (2009). Khảo sát tinh dầu vỏ trái và lá tắc Fortunella japonica, Thumb. Tạp chí Phát triển Khoa học và công nghệ, 12(10), 41–47. (in Vietnamese).
Quoc, L. P. T. (2022). Physicochemical properties, chemical components, and antibacterial activity of the essential oil from Mentha arvensis L. leaves. Uch. Zap. Kazan. Univ., Ser. Estestv. Nauki, 164(1), 36–45. https://dx.doi.org/10.26907/2542-064X.2022.1.36-45
Long, D. M., Quoc, L. P. T., Nhung, T. T. P., Thy, V. B., Nhu, N. L. Q. (2023). Chemical profiles and biological activities of essential oil of Citrus hystrix DC. peels. Korean J. Food Preserv., 30(3), 395–404. https://dx.doi.org/10.11002/kjfp.2023.30.3.395
Radi, F. Z., Bouhrim, M., Mechchate, H., Al-Zahrani, M., Qurtam, A. A., Aleissa, A. M., Zair, T. (2021). Phytochemical analysis, antimicrobial and antioxidant properties of Thymus zygis L. and Thymus willdenowii Boiss. essential oils. Plants, 11(1), 15. https://dx.doi.org/10.3390/plants11010015
Quyen, P. T., Quoc, L. P. T. (2023). Chemical profile and biological properties of the essential oil of Rosemary leaves (Rosmarinus officinalis L.). Mong. J. Chem., 24(50), 40–45. https://dx.doi.org/10.5564/mjc.v24i50.2853
Bacanlı, M., Basaran, A., Basaran, N. (2015). The antioxidant and antigenotoxic properties of citrus phenolics limonene and naringin. Food Chem. Toxicol., 81, 160–170. https://dx.doi.org/10.1016/j.fct.2015.04.015
Sales, A., Felipe, L. D. O., Bicas, J. L. (2020). Production, properties, and applications of α-terpineol. Food Bioprocess Technol., 13, 1261–1279. https://dx.doi.org/10.1007/s11947-020-02461-6
Dosoky, N. S., Setzer, W. N. (2018). Biological activities and safety of Citrus spp. essential oils. Int. J. Mol. Sci., 19(7), 1966. https://dx.doi.org/10.3390/ijm19071966
Lin, L. Y., Chuang, C. H., Chen, H. C., Yang K. M. (2019). Lime (Citrus aurantifolia (Christm.) Swingle) essential oils: volatile compounds, antioxidant capacity, and hypolipidemic Effect. Foods, 8, 398. https://dx.doi.org/10.3390/foods8090398
Sebei, K., Sakouhi, F., Herchi, W., Khouja, M. L., Boukhchina, S. (2015). Chemical composition and antibacterial activities of seven Eucalyptus species essential oils leaves. Biol. Res., 48, 7. https://dx.doi.org/10.1186/0717-6287-48-7
Phong, H. X., Ngan, M. K., Nguyen, T. T. T., Chau, L. M., Thanh, N. N., Giang, B. L., Cang, M. H., Dung, N. T., Ay, N. V. (2021). Chemical composition and antimicrobial activity of the essential oil extracted from pomelo peel (Citrus grandis (L.) Osbeck). CTU J. Sci., 57, 189–195. https://dx.doi.org/10.22144/ctu.jsi.2021.022
Lin, X., Cao, S., Sun, J., Lu, D., Zhong, B., Chun, J. (2021). The chemical compositions, and antibacterial and antioxidant activities of four types of citrus essential oils. Molecules, 26(11), 3412. https://dx.doi.org/10.3390/molecules26113412
Al-Harrasi, A., Bhatia, S., Behl, T., Kaushik, D., Anwer, M. K., Ahmed, M. M., Sharma, P. B., Sharma, A., Kabir, M. T., Mittal, V. (2022). In role of essential oils in the management of Covid-19. CRC press, Boca Raton, USA,
Gadhoumi, H., Hayouni, E. L. A., Martinez-Rojas, E., Yeddes, W., Tounsi, S. (2022). Biochemical composition, antimicrobial and antifungal activities assessment of the fermented medicinal plants extract using lactic acid bacteria. Arch. Microbiol., 204, 374. https://dx.doi.org/10.1007/s00203-022-02985-9

Downloads
Published
Issue
Section
License
Copyright (c) 2025 Oles Honchar Dnipro National University

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).