NOVEL METHODS OF SPINEL FERRITES PRODUCTION: MINI-REVIEW
DOI:
https://doi.org/10.15421/jchemtech.v32i3.308828Keywords:
spinel; ferrite; self-deposition; ultrasound; plasma; saturation magnetization.Abstract
Spinel ferrites as a type of inorganic compounds have attracted the interest of scientists since their discovery in the last century until now. Spinel ferrites have become one of the best materials for various applications such as catalysts, adsorbents, gas sensors, lithium battery fillers, information storage systems, magnetic fluids, microwave absorbers, etc. The popularity of these ferrites is due to the ability to regulate their specific properties, such as coercive force, permeability, resistivity, and saturation magnetization, by changing their chemical composition and production technologies. In the review, a comparative analysis of various compositions of spinel ferrites, the structure of spinel ferrites, and possible applications was carried out. The classification of methods of obtaining was carried out. Liquid-phase methods can be considered more technologically feasible. When comparing hydrothermal, sonochemical, and sol-gel synthesis methods, it was found that the hydrothermal process makes it possible to adjust the size, shape, monodispersity, and crystallinity. The newest technologies for obtaining ferrites are also considered in detail; plasma, and ultrasonic. Their features are described.
References
Salih, S. J., Mahmood, W. M. (2023). Review on magnetic spinel ferrite (MFe2O4) nanoparticles: From synthesis to application. Heliyon, 9(6), e16601. DOI: 10.1016/j.heliyon.2023.e16601.
Frolova, L. A., Khmelenko, O. V. (2021). The Study of Co-Ni-Mn Ferrites for the Catalytic Decomposition of 4-Nitrophenol. Catalysis Letters, 151(5), 1–12. DOI:10.1007/s10562-020-03419-1
Frolova, L.A. (2014). Production conditions of iron oxide black from pickle liquors. Metallurgical and Mining Industry, 6(4), 65–69.
Liandi, A. R., Cahyana, A. H., Kusumah, A. J. F., Lupitasari, A., Alfariza, D. N., Nuraini, R., Sari, R. W., Kusumasari, F. C. (2023). Recent trends of spinel ferrites (MFe2O4: Mn, Co, Ni, Cu, Zn) applications as an environmentally friendly catalyst in multicomponent reactions: A review. Case Studies in Chemical and Environmental Engineering, 7, 100303. https://doi.org/10.1016/j.cscee.2023.100303
Frolova, L., Saltykov, D. and Kushnerov, O. (2023). Investigation of the Structure and Magnetic and Microwave Absorption Properties of Nanocomposite PVA/Graphite/CoFe1.97Ce0.03O4. (2023). ECS Journal of Solid State Science and Technology, 11(12), 121011. DOI:10.1149/2162-8777/acaeb8
Valenzuela, R. (2012). Novel applications of ferrites. Physics Research International, 2012(1), 1–9. DOI:10.1155/2012/591839
Bellido, E., Domingo, N., Ojea‐Jiménez, I., Ruiz‐Molina, D. (2012). Structuration and integration of magnetic nanoparticles on surfaces and devices. Small, 8(10), 1465–1491. https://doi.org/10.1002/smll.201101456
Moustafa, M. G., Hamdeh, H. H., Sebak, M. A., Mahmoud, M. H. (2023). Mössbauer spectral analysis and magnetic properties of the superparamagnetic Mn0.5Zn0.5Fe2O4 ferrite nanocomposites. Materials Today Communications, 37, 107090. https://doi.org/10.1016/j.mtcomm.2023.107090
Bharadwaj, S., Lakshmi, Y. K. (2023). Tuning of Structural, Electrical and Magnetic Properties of Ferrites. Engineered Ferrites and Their Applications. Part of the book series: Materials Horizons: From Nature to Nanomaterials, 17–39. https://doi.org/10.1007/978-981-99-2583-4_2
Kaur, S., Sharma, A. & Thakur, N. (2023). Basic Physics and Chemistry of Ferrites. Engineered Ferrites and Their Applications. Part of the book series: Materials Horizons: From Nature to Nanomaterials, 1–15. https://doi.org/10.1007/978-981-99-2583-4_1
Garcia-Munoz, P., Fresno, F., Victor, A., Keller, N. (2020). Ferrite materials for photoassisted environmental and solar fuels applications. Topics in Current Chemistry, 378(1), 6. doi: 10.1007/s41061-019-0270-3
Goldman, A. (2006). Modern ferrite technology. Springer Science & Business Media, USA.
Malkinski, L., ed. (2012) Advanced magnetic materials. BoD–Books on Demand.
Hazra, S., Ghosh, N. N. (2014). Preparation of nanoferrites and their applications. Journal of nanoscience and nanotechnology, 14(2), 1983–2000. DOI: 10.1166/jnn.2014.8745
da Silva , E. B S., da Silva Ferreira, S. R, da Silva, A. O, Lopes Matias, J. A., Albuquerque, A. R., de Oliveira, J. B. L, Morales, M. A (2020). Cashew gum as a sol-gel precursor for green synthesis of nanostructured Ni and Co ferrites. International Journal of Biological Macromolecules, 164, 4245–4251. https://doi.org/10.1016/j.ijbiomac.2020.08.252
Diodati, S. Pandolfo, L., Caneschi, А., Gialanella, S., Gross, S. (2014). Green and low temperature synthesis of nanocrystalline transition metal ferrites by simple wet chemistry routes. Nano Research, 7, 1027–1042. https://doi.org/10.1007/s12274-014-0466-3
Kombaiah, K., Vijaya, J. J., Kennedy, L. J., Bououdina, M., Ramalingam, R. J., Al-Lohedan, H. A. (2018). Okra extract-assisted green synthesis of CoFe2O4 nanoparticles and their optical, magnetic, and antimicrobial properties. Materials Chemistry and Physics, 204, 410–419. https://doi.org/10.1016/j.matchemphys.2017.10.077
Tatarchuk, T., Liaskovska, M., Kotsyubynsky, V., Bououdina, M. (2018). Green synthesis of cobalt ferrite nanoparticles using Cydonia oblonga extract: structural and mossbauer studies. Molecular Crystals and Liquid Crystals, 672(1), 54–66. doi:10.1080/15421406.2018.1542107
Naik, M. M., Naik, H. S. B., Nagaraju, G., Vinuth, M., Naika, H. R, Vinu, K. (2019). Green synthesis of zinc ferrite nanoparticles in Limonia acidissima juice: characterization and their application as photocatalytic and antibacterial activities. Microchemical Journal, 146, 1227–1235. https://doi.org/10.1016/j.microc.2019.02.059
Gingasu, D., Mindru I., Patron, L., Calderon-Moreno, J. M., Mocioiu, O. C., Preda, S., Stanica, N., Nita, S., Dobre, N., Popa, M., Gradisteanu, G., Chifiriuc, M. C. (2016). Green synthesis methods of CoFe2O4 and Ag-CoFe2O4 nanoparticles using hibiscus extracts and their antimicrobial potential. Journal of Nanomaterials, 2016(1), 1–12. doi:10.1155/2016/2106756
Gingasu, D., Mindru, I., Mocioiu, O. C., Preda, S., Stanica, N., Patron, L., Ianculescu, M., Oprea, O., Nita, S., Paraschiv, I., Popa, M. Saviuc, C., Bleotu, C., Chifiriuc, M. C. (2016). Synthesis of nanocrystalline cobalt ferrite through soft chemistry methods: A green chemistry approach using sesame seed extract. Materials Chemistry and Physics, 182, 219–230. DOI: 10.1016/j.matchemphys.2016.07.026
Alfina, A., Stiadi, Y., Lee, H. J. (2019). Green synthesis and Characterization of ZnO-CoFe 2 O 4 Semiconductor Photocatalysts Prepared Using Rambutan (Nephelium lappaceum L.) Peel Extract. Materials Research, 22, e20190228.https://doi.org/10.1590/1980-5373-MR-2019-0228
Yeni, R., Alfina, A., Stiadi, Y., Lee, H. J., Zulhadjri, Z. (2019). Green synthesis and Characterization of ZnO-CoFe2O4 Semiconductor Photocatalysts Prepared Using Rambutan (Nephelium lappaceum L.) Peel Extract. Materials Research, 22(5). doi:10.1590/1980-5373-mr-2019-0228
Naik, M. M., Naik, H. S. B., Nagaraju, G., Vinuth, M., Vinu, K., Viswanath, R. (2019). Green synthesis of zinc doped cobalt ferrite nanoparticles: Structural, optical, photocatalytic and antibacterial studies. Nano-Structures & Nano-Objects, 19, 100322.
https://doi.org/10.1016/j.nanoso.2019.100322
Moon, J. W., Yeary, L. W., Rondinone, A. J., Rawn, C. J., Kirkham, M. J., Roh, Y., Love, L. J., Phelps, T. J. (2007). Magnetic response of microbially synthesized transition metal-and lanthanide-substituted nano-sized magnetites. Journal of magnetism and magnetic materials, 313(2), 283–292. https://doi.org/10.1016/j.jmmm.2007.01.011
Fardood, S. T., Ramazani, A., Moradi, S. (2017). Green synthesis of Ni–Cu–Mg ferrite nanoparticles using tragacanth gum and their use as an efficient catalyst for the synthesis of polyhydroquinoline derivatives. Journal of Sol-Gel Science and Technology, 82(2), 432–439. DOI10.1007/s10971-017-4310-6
Fardood, S. T., Ramazani A., Golfar, Z., Joo, S. W. (2017). Green synthesis of Ni‐Cu‐Zn ferrite nanoparticles using tragacanth gum and their use as an efficient catalyst for the synthesis of polyhydroquinoline derivatives. Applied Organometallic Chemistry, 31(12), e3823. https://doi.org/10.1002/aoc.3823.
Tu, Y. J., You, C. F. (2014). Phosphorus adsorption onto green synthesized nano-bimetal ferrites: equilibrium, kinetic and thermodynamic investigation. Chemical Engineering Journal, 251, 285–292. https://doi.org/10.1016/j.cej.2014.04.036
Yeary, L. W., Mo, J. W., Rawn, C. J., Love, L. J., Rondinone, A. J., Thompson, J. R., Chakoumakos, B. C. , Phelps, T. J. (2011). Magnetic properties of bio-synthesized zinc ferrite nanoparticles. Journal of Magnetism and Magnetic Materials, 323(23), 3043–3048. https://doi.org/10.1016/j.jmmm.2011.06.049
Li, J., Ng, D. H. L., Song, P., Song, Y., Kong, C. (2015). Bio-inspired synthesis and characterization of mesoporous ZnFe2O4 hollow fibers with enhancement of adsorption capacity for acid dye. Journal of Industrial and Engineering Chemistry, 23, 290–298. https://doi.org/10.1016/j.jiec.2014.08.031
Perreux, L., Loupy, A. (2001). A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations. Tetrahedron, 57(45), 9199–9223. DOI:10.1016/S0040-4020(01)00905-X
Ashok, A., Kennedy, L. J., Vijaya, J. J. (2019). Structural, optical and magnetic properties of Zn1-xMnxFe2O4 (0≤ x≤ 0.5) spinel nano particles for transesterification of used cooking oil. Journal of Alloysand Compounds, 780, 816–828. DOI:10.1016/j.jallcom.2018.11.390
Radpour, M., Masoudpanah, S. M., Alamolhoda, S. (2017). Microwave-assisted solution combustion synthesis of Fe3O4 powders. Ceramics International, 43(17), 14756–14762. doi:10.1016/j.ceramint.2017.07.216
Kasapoğlu, N., Baykal, A., Köseoğlu, Y., Toprak, M. S. (2007). Microwave-assisted combustion synthesis of CoFe2O4 with urea, and its magnetic characterization. Scripta Materialia, 57(5), 441–444. https://doi.org/10.1016/j.scriptamat.2007.04.042
Kooti, M., Sedeh, A. N. (2013). Synthesis and characterization of NiFe2O4 magnetic nanoparticles by combustion method. Journal of Materials Science & Technology, 29(1), 34–38. doi:10.1016/j.jmst.2012.11.016
Kombaiah, K., Vijaya, J. J., Kennedy, L. J., Bououdina, M. (2017). Optical, magnetic and structural properties of ZnFe2O4 nanoparticles synthesized by conventional and microwave assisted combustion method: a comparative investigation. Optik-International Journal for Light and Electron Optics, 129, 57–68. https://doi.org/10.1016/j.ijleo.2016.10.058
Manikandan, A., Vijaya, J. J., Kennedy, L. J., Bououdina, M. (2013). Microwave combustion synthesis, structural, optical and magnetic properties of Zn1−xSrxFe2O4 nanoparticles. Ceramics International, 39(5), 5909–5917. https://doi.org/10.1016/j.ceramint.2013.01.012
Zulfugarova, S. M., Ramiz, A. G., Fikret, A. Z., Humbat, I. E., Nikolayevich, L. Y., Babir, T. D. (2022). Microwave Sol-gel Synthesis of Co, Ni, Cu, Mn Ferrites and the Investigation of Their Activity in the Oxidation Reaction of Carbon Monoxide. Current Microwave Chemistry, 9(1), 37–46.
Esmaeili, H., Tamjidi, S. (2020). Ultrasonic-assisted synthesis of natural clay/Fe3O4/graphene oxide for enhance removal of Cr (VI) from aqueous media. Environmental Science and Pollution Research, 27(25), 31652–31664. doi:10.1007/s11356-020-09448-y
Frolova, L. A., Shapa N. N. (2011). Technology of extraction manganese compounds from the discharge water of metallurgical enterprises with the use of ultrasound. Metallurgical and Mining Industry, 3(6), 287–291.
Amulya, M. A. S., Nagaswarupa, H. P., Kumar M. R. A., Ravikumar, C. R., Kusuma, K. B. (2020). Sonochemical synthesis of MnFe2O4 nanoparticles and their electrochemical and photocatalytic properties. Journal of Physics and Chemistry of Solids, 148, 109661. https://doi.org/10.1016/j.jpcs.2020.109661
Goswami, P. P., Choudhury H., Chakma, S., Moholkar, V. S. (2013). Sonochemical synthesis of cobalt ferrite nanoparticles. International Journal of Chemical Engineering, 2013(1), 934234. doi:10.1155/2013/934234
Harzali, H., Saida, F., Marzouki, A., Megriche, A., Baillon, F., Espitalier, F., Mgaidi, A. (2016). Structural and magnetic properties of nano-sized NiCuZn ferrites synthesized by co-precipitation method with ultrasound irradiation. Journal of Magnetism and Magnetic Materials, 419, 50–56. https://doi.org/10.1016/j.jmmm.2016.05.084
Aliramaji, S., Zamanian, A., Sohrabijam, Z. (2015). Characterization and synthesis of magnetite nanoparticles by innovative sonochemical method. Procedia Materials Science, 11, 265–269. https://doi.org/10.1016/j.mspro.2015.11.022
Kuznetsova, V. A.; Almjasheva, O. V., Gusarov, V. V. (2009). Influence of microwave and ultrasonic treatment on the formation of CoFe2O4 under hydrothermal conditions. Glass Physics and Chemistry, 35(2), 205–209. DOI:10.1134/S1087659609020138
Goswami, P. P. Choudhury, H. A., Chakma, S., Moholkar, V. S. (2013). Sonochemical synthesis and characterization of manganese ferrite nanoparticles. Industrial & Engineering Chemistry Research, 52(50), 17848–17855. https://doi.org/10.1021/ie401919x
Almessiere, M. A. Slimani, Y., Guner, S., Sertkol, M., Korkmaz, A. D., Shirsath, S. E., Baykal, A. (2019). Sonochemical synthesis and physical properties of Co0.3Ni0.5Mn0.2EuxFe2−xO4 nano-spinel ferrites. Ultrasonics sonochemistry, 58, 104654. https://doi.org/10.1016/j.ultsonch.2019.104654
Almessiere, M. A., Slimani, Y., Kurtan, U., Guner, S., Sertkol, M., Shirsath, S. E., Akhtar, S., Baykal, A., Ercan, I. (2019). Structural, magnetic, optical properties and cation distribution of nanosized Co0.7Zn0.3TmxFe2−xO4 (0.0≤ x≤ 0.04) spinel ferrites synthesized by ultrasonic irradiation. Ultrasonics Sonochemistry, 58, 104638. doi: 10.1016/j.ultsonch.2019.104638
Frolova, L., Pivovarov, A., Tsepich, E. (2016). Ultrasound ferritization. Journal of Chemical Technology and Metallurgy, 51(2), 163–167. https://journal.uctm.edu/node/j2016-2/5-Florova-163-167.pdf
Almessiere, M. A., Slimani, Y., Korkmaz, A. D., Sertkol, M., Baykal, A., Ercan, I., Ozcelik, B. (2019). Sonochemical Synthesis of CoFe2-xNdxO4 Nanoparticles: Structural, Optical, and Magnetic Investigation. Journal of Superconductivity and Novel Magnetism, 32, 3837–3844. https://doi.org/10.1007/s10948-019-05147-z
Almessiere, M. A., Slimani, Y., Korkmaz, A. D., Baykal, A., Güngüneş, H., Sözeri, H., Manikandan, A. (2019). Impact of La 3+ and Y 3+ ion substitutions on structural, magnetic and microwave properties of Ni0.3Cu0.3Zn0.4Fe2O4 nanospinel ferrites synthesized via sonochemical route. RSC Advances, 9(53), 30671–30684. doi:10.1039/C9RA06353F
Almessiere, M. A., Slimani, Y., Korkmaz, A. D., Güner, S., Baykal, A., Shirsath, S. E., Ercan, I., Kögerler, P. (2020). Sonochemical synthesis of Dy3+ substituted Mn0.5Zn0.5Fe2−xO4 nanoparticles: Structural, magnetic and optical characterizations. Ultrasonics sonochemistry, 61, 104836. https://doi.org/10.1016/j.ultsonch.2019.104836
Frolova, L. A. (2019). The mechanism of nickel ferrite formation by glow discharge effect. Applied Nanoscience, 9, 845–852. https://doi.org/10.1007/s13204-018-0767-z
Frolova, L., Pivovarov, A., Tsepich, E. (2016). Non-equilibrium plasma-assisted hydrophase ferritization in Fe2+-Ni2+-SO42--OH-system. Nanophysics, Nanophotonics, Surface Studies, and Applications. Springer Proceedings in Physics. 183, 213–220. https://doi.org/10.1007/978-3-319-30737-4_18
Frolova, L. A., Hrydnieva, T. V. (2020). Synthesis, structural, magnetic and photocatalytic properties of MFe2O4 (M= Co, Mn, Zn) ferrite nanoparticles obtained by plasmachemical method. Journal of Chemistry and Technologies, 28(2), 202–210. https://doi.org/10.15421/082022
Frolova, L., Khmelenko, O. (2018). Investigation of the Magnetic Properties of Ferrites in the CoO‐NiO‐ZnO Using Simplex‐Lattice Design. Journal of Nanomaterials, 2018, 1–8. https://doi.org/10.1155/2018/5686741
Frolova, L., Sukhyy, K. (2022). The effect of the cation in spinel ferrite MeFe2O4 (Me= Co, Ni, Mn) on the photocatalytic properties in the degradation of methylene blue. Materials Today: Proceedings, 62, 7726–7730. https://doi.org/10.1016/j.matpr.2022.03.503
Frolova, L. A., Hrydnieva, T. V. (2020). Synthesis, structural, magnetic and photocatalytic properties of MFe2O4 (M= Co, Mn, Zn) ferrite nanoparticles obtained by plasmachemical method. Journal of Chemistry and Technologies, 28(2), 202–210. doi: https://doi.org/10.15421/082022
Frolova, L. (2020). Photocatalytic activity of spinel ferrites CoxFe3−xO4 (0.25< x< 1) obtained by treatment contact low-temperature non-equilibrium plasma liquors. Applied Nanoscience, 10(12), 4585–4590. doi:10.1007/s13204-020-01344-8
Frolova, L. A., Derhachov, M. P. (2017). The Effect of Contact Non-equilibrium Plasma on Structural and Magnetic Properties of MnХFe3− XО4 Spinels. Nanoscale research letters, 12(1), 1–9. doi: 10.1186/s11671-017-2268-5
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Oles Honchar Dnipro National University
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).