OLEOCHEMICAL PRODUCTS IN SYNTHESIS TECHNOLOGIES OF ECO-FRIENDLY POLYMERS
DOI:
https://doi.org/10.15421/jchemtech.v32i4.309194Keywords:
fatty acid amides; "green" chemistry; metal-containing biopolymers; oleochemistry; polyesteramides, polyester polyols; polyurethane amides; vegetable oil.Abstract
Promising directions of synthesis from renewable vegetable oil raw materials of monomeric and oligomeric oleochemical products are considered: modified triglycerides as ingredients of special-purpose polymer compositions; fatty alcohols, esters and amides of fatty acids as surfactants in detergents, cosmetics, paints, pharmaceuticals, as ecological fuel; polyols and hydroxyl-containing oligomers for the synthesis of polyurethane, polyesteramide, polyurethaneamide binders and coatings with anti-corrosion and antimicrobial properties. The synthesis routes of fatty acid amides, in particular hydroxyl-containing ones with a functionality of 2 or more, as starting compounds for promising polyesteramides are considered in detail. The strategy of synthesis from vegetable oils of saturated polyols with primary hydroxyl groups as promising components for environmentally friendly paint and varnish compositions is considered. Data on the synthesis and properties of polyurethaneamides, polyesteramides and metal-containing derivatives based on them are presented. For each product type an analysis was made of the state of development of a particular technology, as well as future prospects and existing barriers to their development. The possibility of using metal-containing polymers to create biodegradable materials and coatings with hydrophobic properties and antimicrobial activity was shown.
References
Gobinda Karmakar, Koushik Dey, Pranab Ghosh, Brajendra K. Sharma,and Sevim Z. Erhan. A. (2021). Short Review on Polymeric Biomaterials as Additives for Lubricants. Polymers, 13(8), 1333. https://doi.org/10.3390/polym13081333
Siti Fatimah Abdul Halim, Siu Hua Chang, Norhashimah Morad (2019). Parametric studies of Cu(II) ion extraction into palm kernel fatty acid distillate as a green organic solvent. Journal of Environmental Chemical Engineering. 7(6), 103488. https://doi.org/10.1016/j.jece.2019.103488
Siu Hua Chang, Annestasia Ollat Anak Jampang. Green extraction of gold(III) and copper(II) from chloride media by palm kernel fatty acid distillate (2022). Journal of Water Process Engineering. 47(June,) 102646. https://doi.org/10.1016/j.jwpe.2022.102646
Patil, C. K., Jung, D. W., Jirimali, H. D., Baik, J. H., Gite, V. V., Hong, S. C. (2021). Nonedible Vegetable Oil-Based Polyols in Anticorrosive and Antimicrobial Polyurethane Coatings. Polymers, 13, 3149. https://doi.org/10.3390/polym13183149
Vinay Sharma, P. P. Kundu. (2008). Condensation polymers from natural oils. Progress in Polymer Science, 33, 1199–1215. https://doi.org/10.1016/j.progpolymsci.2008.07.004
Siyanbola,T.O. Neelambaram P., Mohanty, S., Somisetti, V., Basak, P., Ramanuj Narayan, Kothapalli, Raju V.S.N. (2019). The effects of carbonized Eucalyptus globulus leaves on castor seed oil based urethane coating system. Progress in Organic Coatings, 131, 42–48. https://doi.org/10.1016/j.porgcoat.2019.02.018.
Harekrishna Deka, Niranjan Karak. (2009). Vegetable Oil-Based Hyperbranched Thermosetting Polyurethane/Clay Nanocomposites. Nanoscale Res Lett, 4, 758–765. https://doi.org/10.1007/s11671-009-9313-y
Wenfeng Zhang, Haitao Wang, Boxue Chen, Xianghong Bi, Swaminathan Venkatesan, Qiquan Qiao, Shangfeng Yang. (2012). Oleamide as a self-assembled cathode buffer layer for polymer solar cells: the role of the terminal group on the function of the surfactant. J. Mater. Chem., 22, 24067. https://doi.org/10.1039/c2jm35199d
Oliver Palardy, Craig Behnke, Lieve, M. L. Laurens. (2017). Crude Hydrothermal Liquefaction Oils From Algal Biomass/ Energy Fuels, 31(8), 8275-8282. https://doi.org/10.1021/acs.energyfuels.7b01175
Wael Abdelmoez, Ahmad Mustafa. (2014). Oleochemical industry future through biotechnology. Oleo Sci., 63(6), 545-54. https://doi.org/10.5650/jos.ess14022
Holmiere, S., Valentin, R., Maréchal, P., Mouloungui, Z. (2017). Esters of oligo-(glycerol carbonateglycerol): new biobased oligomeric surfactants. J. of Colloid and Interface Science, 487, 418-425. https://doi.org/10.1016/j.jcis.2016.10.072
Manawwer Alam, Deewan Akram, Eram Sharmin, Fahmina Zafar, Sharif Ahmad. (2014). Vegetable oil based eco-friendly coating materials: A review article. Arabian Journal of Chemistry, 7(4), 469-479. https://doi.org/10.1016/j.arabjc.2013.12.023
Tianze Cheng. (2019). Review of novel energetic polymers and binders – high energy propellant ingredients for the new space race. Designed Monomers and Polymers, 22(1), 54–65. https://doi.org/10.1080/15685551.2019.1575652
Mateusz Szala. (2021). Polymer-bonded secondary explosives (Kruszące materiały wybuchowe z lepiszczem polimerowym). Materiały Wysokoenergetyczne. High Energy Materials, 13(5)16. https://doi.org/0.22211/matwys/0213ISSN 2083-0165
Hanqing Song, Wei Chai, Fei Yang, Man Ren, Fang Chen, Wutai Guan, Shihai Zhang. (2021). Effects of Dietary Monoglyceride and Diglyceride Supplementation on the Performance, Milk Composition, and Immune Status of Sows During Late Gestation and Lactation. Fron.t Vet. Sci., 8, 714068. https://doi.org/10.3389/fvets.2021.714068
Suhane, A, Rehman, A. Khaira, H. (2012). Potential of non-edible vegetable oils as an alternative lubricants in automotive applications. Int. J. Eng. Res Appl., 2, 1330–1335. https://api.semanticscholar.org/CorpusID:8337929,
Attia, M. I., Zoorob, S., Hassan, K., El-husseini H., Reid, J. M., Al Kuwari, M. S. (2017). Development of building blocks using vegetable oil and recycled aggregate. MATEC Web of Conf. 12, 03006. https://doi.org/10.1051/matecconf/201712003006
Forth, J.P. and Zoorob S. (2008). Vegetable oil-based construction materials. (2008) International Patent No WO 2008/117077 (A3).
Alam, M., Akram, D., Sharmin, E., Zafar, F., Ahmad, S. (2014). Vegetable oil based eco-friendly coating materials: a review article. Arab. J. Chem., 7(4), 469–479. https://doi.org/10.1016/j.arabjc.2013.12.023
Hadeel Hosney, Bassant Nadiem, Ibrahim Ashour, Ibrahim Mustafa, Ayman El-Shibiny. (2018). Epoxidized vegetable oil and bio-based materials as PVC plasticizer. J. Appl. Polym. Sci., 135(20), 46270. https://doi.org/10.1002/APP.46270
Jie Chen, Xiaoying Li, Yigang Wang, Jinrui Huang, Ke Li, Xiaoan Nie, Jianchun Jiang. (2017). Synthesis and application of environmental soybean oil-based epoxidized glycidyl ester plasticizer for poly(vinyl chloride). European Journal of Lipid Science and technology, 119(5), 1600216. https://doi.org/10.1002/ejlt.201600216
Chandrashekhar, K. Patil, Dong Wook Jung, Harishchandra, D. Jirimali, Joon Hyun Baik, Vikas, V. Gite , Sung Chul Hong. (2021). Nonedible vegetable oil-based polyols in anticorrosive and antimicrobial polyurethane coatings. Polymers, 13(18), 3149. https://doi.org/10.3390/polym13183149
Behr, A., Seidensticker, T. (2020). The basics of oleochemistry-basic oleochemicals. In Chemistry of renewables. (pp. 34-38). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61430-3_3. 37-60
Chervakov, O. V., Filinskaya,T. G., Kopiton, V. O. (2007). [Methods of transesterification of fat-containing raw materials by alcoholysis]. Voprosy khimii i khimicheskoi technologii , (4), 72-79 (In russian).
Filinska T. G., Chervakov, O. V. (2010). [Transesterification of vegetable and animal fats by the alcoholysis method using an alkaline and acid catalyst]. Voprosy khimii i khimicheskoi technologii , (2), 34-38 (In Ukrainian).
Filinskaya, T. G. Chervakov, O. V. Gerasimenko, K. O., Tanko, J. Yu. (2013). [Application of new heterogeneous sulfonic acid polymer catalysts in the processing of waste from fat processing industries] Kataliz v promy`shlennosti, (3), 75-81 (In russian).
Paulo, A. Z. Suarez, Simoni, M. Plentz Meneghetti, Mario, R. Meneghetti, Carlos, R. Wolf. (2007). Transformação de triglicerídeos em combustíveis, materiais poliméricos e insumos químicos: algumas aplicações da catálise na oleoquímica [Transformation of triglycerides into fuels, polymers and chemicals: Some applications of catalysis in oleochemistry]. Quim. Nova, 30(3), 667-676.
Pattabiraman, Vijaya R., Bode, Jeffrey W. (2011). Rethinking amide bond synthesis Nature, 480(7378), 471-479. DOI:10.1038/nature10702. https://www.nature.com/articles/nature10702
Farrell, Emma K., Merkler, David J. (2008). Biosynthesis, degradation and pharmacological importance of the fatty acid amides. Drug Discovery Today, 13(13-14), 558-68. https://doi.org/10.1016/j.drudis.2008.02.006
Fábio Rodrigues de Oliveira, Keuri Eleuterio Rodrigues, Moisés Hamoy, Ícaro Rodrigues Sarquis, Akira Otake Hamoy, Maria Elena Crespo Lopez, Irlon Maciel Ferreira, Barbarella de Matos Macchi and José Luiz Martins do Nascimento. (2020). Fatty acid amides synthesized from Andiroba oil (Carapa guianensis Aublet.) exhibit anticonvulsant action with modulation on gaba-a receptor in mice: a putative therapeutic option. Pharmaceuticals, 13(3), 43. https://doi.org/10.3390/ph13030043
Ruidong Ni, Suzeeta Bhandari, Perry, R. Mitchell Jr., Gabriela Suarez, Neel, B. Patel, Kara Lamb, Kirpal, S. Bisht, David, J. Merkler. (2021). Synthesis, quantification, and characterization of fatty acid amides from in vitro and in vivo sources. Mol,ecules, 26(9), 2543. https://doi.org/10.3390/molecules26092543
Melnyk, S., Danyliuk, R., Melnyk, Yu., Reutskyy V. (2018). Тhe reaction of oleic acid with a mixture of ethanolamines. Chem. Chem. Technol., 12(1), 13–17. https://doi.org/10.23939/chcht12.01.013
Fábio Rodrigues de Oliveira, Nágila Monteiro da Silva, Moisés Hamoy, Maria Elena Crespo-López, Irlon Maciel Ferreira, Edilene Oliveira da Silva, Barbarella de Matos Macchi, José Luiz Martins do Nascimento. (2022)/ The GABAergic system and endocannabinoids in epilepsy and seizures: what can we expect from plant oils? Molecules, 27(11), 3595. https://doi.org/10.3390/molecules27113595
Porcayo-Calderon, J., Rivera-Muñoz, E. M., Peza-Ledesma, C., Casales-Diaz, M., Martínez de la Escalera, L. M., Canto, J., Martinez-Gomez, L. (2017). Sustainable development of palm oil: synthesis and el ectrochemical performance of corrosion inhibitors. J. Electrochem. Sci. Technol., 8(2), 133-145. https://doi.org/10.5229/JECST.2017.8.2.133
Dinesh Kumar, Chan Hee Park, Cheol Sang Kim. (2020). Sustainable heterogeneously catalyzed single-step and two-step amide derivatives of non-edible natural triglycerides as dual-functional diesel fuel additives. Industrial Crops and Products, 158(15), 113001. https://doi.org/10.1016/j.indcrop.2020.113001
Mohammad Kashif, Eram Sharmin, Fahmina Zafar, Sharif Ahmad. (2011). Synthesis and characterization of ricinoleamide-based polyurethane. J. Am. Oil. Chem. Soc. 88(12), 1989-1996. https://doi.org/10.1007/s11746-011-1867-z .
Mutlu, H., Meier, M. A. R. (2010). Castor oil as a renewable resource for the chemical industry. Eur. J. Lipid. Sci. Technol. 112(1), 10-30. https://doi.org/10.1002/ejlt.200900138.
Harsh Pandya, Prakash Mahanwar. (2020). Fundamental insight into anionic aqueous polyurethane dispersions. Advanced Industrial and Engineering Polymer Research, 3(3), 102-110. https://doi.org/10.1016/j.aiepr.2020.07.003.
Meshrama, Pawan D., Puria, Ravindra G., Patil, Amol L., Giteb., Vikas V. (2013). Synthesis and characterization of modified cottonseed oil based polyesteramide for coating applications. Progress in Organic Coatings, 76(9), 1144–1150. http://dx.doi.org/10.1016/j.porgcoat.2013.03.014
John Argyropoulos, Paul Popa, Gary Spilman, Debkumar Bhattacharjee, William Koonce. (2009). Seed oil based polyester polyols for coatings. J. Coat. Technol. Res., 6(4), 501–508. https://doi.org/10.1007/s11998-008-9154-0
Raminder Kaur, Pooja Singh, Surya Tanwar, Gunjan Varshney, Sarla Yadav. (2022). Assessment of bio-based polyurethanes: perspective on applications and bio-degradation. Macromol., 2(3), 284–314. https://doi.org/10.3390/macromol2030019
Lysenko Zenon, Schrock Alan K., Babb David A., Sanders Aaron,et al. (2004). Vegetable oil based polyols and polyurethanes made therefrom. (2004). International Patent WO2004096882 (A1).
Hoy, K. L. (1970). New values of the solubility parameters from vapor pressure data. J. Paint Techn., 42(541), 76-78.
Hoy, K. L. (1985). The Hoy Tables of solubility parameters. Union Carbide Corp., South Charleston, WV
Guner, A. (2004). The algorithmic calculations of solubility parameter for the determination of interactions in dextrin/certain polar solvent systems. Eur. Polym. J., 40, 1587–1594.
Dipak, S. Tathe, Jagtap, R. N. (2014). Design novel polyhydroxyl fatty amide based on Balanites roxburgii oil and its application for coating. Designed Monomers and Polymers, 17(8), 717-725. http://dx.doi.org/10.1080/15685551.2014.907622.
Campanella, A., Baltanas, M. A. (2010). Degradation of the oxirane ring of epoxidized vegetable oils in liquid-liquid systems. I. Hydrolysis and attack by H2O2. Lat. Am. Appl. Res., 35, 205–210.
Harjono Purwantiningsih Sugita, Zainal Alim Mas’ud. (2012). Synthesis and application of jatropha oil based polyurethane a,s paint coating material. Makara Journal of Science, 16(2) 134-140. https://doi.org/10.7454/mss.v16i2.1409
Ahmad, S., Ashraf, S M., Zafar, F. (2007). Development of linseed oil based polyesteramide without organic solvent at lower temperature. J. Appl. Polym. Sci. 104(2), 1143–1148. https://doi.org/10.1002/app.25774
Ahmad, S., Ashraf, S. M., Sharmin, E., Alam, M. (2005) Ambient cured tartaric acid modified oil fatty amide anticorrosive coatings. J. Macromol. Sci. A Pure Appl. Chem., 42(6) 751–764. https://doi.org/10.1081/MA-200058648
Ahmad, S., Ashraf, S. M., Alam, M. (2006). Studies on melamine modified polyesteramide as anticorrosive coatings from linseed oil. A sustainable resource. J. Macromol. Sci. A Pure Appl. Chem. 43(4-5), 773–783 (2006). https://doi.org/10.1080/10601320600598886
Yadav, S.; Zafar, F., Hasnat, A., Ahmad, S. (2009). Poly (Urethane Fatty Amide) Resin from Linseed Oil – a Renewable Resource. Prog. Org. Coat, 64(1), 27–32. https://doi.org/10.1016/j.porgcoat.2008.07.006
Toliwal, S. D., Patel, K. (2006). Modified neem (Azadirachta indica) oil based curing of acid functional acrylic copolymer resin for anticorrosive coating. J. Sci. Ind. Res., 65, 590–593.
Zafar, F., Zafar, H., Sharmin, E., Ashraf, S. M., Ahmad, S. (2011). Studies on ambient cured biobased Mn(II), Co(II) and Cu(II) containing metallopolyesteramides. J. Inorg. Organomet. Polym. and Mater., (3), 646–654. https://doi.com/10.1007/s10904-011-9512-8
Zafar, F., Ashraf, S. M., Ahmad, S. (2007)/ Cd and Zn-incorporated polyesteramide coating materials from seed oil – A renewable resource. Progress in Organic Coatings, 59(1), 68–75. https://doi.org/10.1016/j.porgcoat.2007.01.009
Zafar, F., Hassan, Mir M., Kashif, M., Sharmin, E., Ahmad, S. (2013). Microwave Assisted Synthesis of Bio Based Metallopolyurethaneamide. J. Inorg. Organomet. Polym. and Mater., 21, 61–68. https://doi.org/10.1007/s10904-010-9420-3
Pawan D. Meshrama, Ravindra G. Puri, Amol L. Patil, Vikas V. Gite. Synthesis and characterization of modified cottonseed oil based polyesteramide for coating applications // Progress in Organic Coatings.- Volume 76, Issue 9, September 2013, P. 1144-1150. https://doi.org/10.1016/j.porgcoat.2013.03.014
Chandrashekhar K. Patil, Dong Wook Jung, Harishchandra D. Jirimali, Joon Hyun Baik, Vikas V. Gite, Sung Chul Hong. (2021) Nonedible vegetable oil-based polyols in anticorrosive and antimicrobial polyurethane. Coatings Polym., 13(18), 3149. https://doi.org/10.3390/polym13183149
Zafar, F., Ashraf, S. M., Ahmad, S. (2007). Studies on zinccontaining linseed oil based polyesteramide. Reactive & Functional Polymers, 67(10), 928–935. https://doi.org/10.1016/j.reactfunctpolym.2007.05.018
Zafar, F., Ashraf, S. M., Ahmad, S. (2007)/ Cd and Zn-incorporated polyesteramide coating materials from seed oil – a renewable resource. Progress in Organic Coatings, 59(1), 68–75. https://doi.org/10.1016/j.porgcoat.2007.01.009
Bharathi, P., Nazia Umar Khan, Manawwer Alam, Sheikh Shreaz, Athar Adil Hashmi. (2010). Cadmium incorporated oil based bioactive polymers: synthesis, characterization and physico-chemical studies. J. Inorg. Organomet. Polym. and Mater., 20, 833–838. https://doi.org/10.1007/s10904-010-9362-9
Samui, A. B., Chavan, J. G., Hande, V. R. (2006). Study on film forming organo-copper polymer. Progress in Organic Coatings, 57, 301–306. https://doi.org/10.1016/j.porgcoat.2006.09.020
Fahmina, Z., Mir, M. H., Kashif, M., Sharmin, E., Ahmad, S. (2011). Microwave assisted synthesis of bio based metallopolyurethaneamide. J. Inorg. Organomet. Polym. and Mater., 21, 61–68. https://doi.org/10.1007/s10904-010-9420-3
Rahman, O. U., Ahmad, S. (2016). Soy polyester urethane/TiO2 and Ce-TiO2 nanocomposites: preparation, characterization and evaluation of electrochemical corrosion resistance performance. RSC Adv., 6, 10584–10596. https://doi.org/10.1039/C5RA23928A
Charpentier, P., Burgess, K., Wang, L., Chowdhury, R., Lotus, A., Moula, G. (2012). Nano-TiO2/polyurethane composites for antibacterial and self-cleaning coatings. Nanotechnology, 23(42), 425606. 17–23. https://doi.org/10.1088/0957-4484/23/42/425606
Dıez-Pascual, A. M., Dıez-Vicente, A. L. (2015). Development of linseed oil–TiO2 green nanocomposites as antimicrobial coatings. J. Mater. Chem. B, (21), 4458–4471. https://doi.org/10.1039/c5tb00209e
Alam, M., Alandis, N. M., Zafar, F., Eram Sharmin, Yasser, M. Al-Mohammadi. (2018). Polyurethane-TiO2 nanocomposite coatings from sunflower oil-based amide diol as soft segment. J. of Macromol. Sci., Part A, 55(10), 698-708. https://doi.org/10.1080/10601325.2018.1526638
Shaik, M. R.; Alam, M.; Alandis, N. M. (2015)/ Development of castor oil based poly(urethane-esteramide)/TiO2 nanocomposites as anticorrosive and antimicrobial coatings. Journal of Nanomaterials, 2015, ID 745217/. http://dx.doi.org/10.1155/2015/745217
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Oles Honchar Dnipro National University
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).