THE POTENTIAL OF USING SPENT COFFEE GROUNDS IN THE TECHNOLOGIES OF FUNCTIONAL FOOD PRODUCTS. REVIEW
DOI:
https://doi.org/10.15421/jchemtech.v32i3.309754Keywords:
spent coffee grounds; nutritional value; biologically active compounds; food products; functional properties; consumer health; therapeutic effects.Abstract
Analytical review was conducted on information provided in 336 articles, books, laws, patents, and Internet publications included in the Scopus, Web of Science, PubMed, and Google Scholar databases using a wide range of search terms, including spent coffee grounds, nutritional value, biologically active compounds, food products, functional properties, consumer health, therapeutic effects. The growth of global coffee consumption and the mass production of spent coffee grounds (SCG), which contain a large number of valuable organic compounds, are a powerful antioxidant and have a positive effect on human health, led to the need for a comprehensive study of the properties of SCG and technologies for its use in food production. The work carried out an analytical review of the scientific literature, summarized the available information on the chemical and mineral composition of SKG, the content of amino acids, carbohydrates, non-protein nitrogenous compounds, caffeine, lipids, minerals and phenolic compounds, dietary fibers, other biologically active substances, which can be effectively used in various industries food industry. Data on the functional properties of SCG and its antioxidant potential, porosity, granulometric composition of SCG, microbiological safety of SCG are summarized, which allows positioning this product as a raw material for providing desired functional properties to food products. Examples of the use of SCG in the technologies of functional products are given. The impact of the use of some SCG biologically active compounds on human health has been analyzed, which makes it possible to reasonably use SCG in the technologies of various functional products with powerful therapeutic effects and a positive impact on the health of consumers.
References
Singh, A., Sharma, R. (2020). A review on sustainable management of coffee industry by-products Health & Environmental Research Online (HERO). Coffee Market Report, 7(10), 686–691.
Coffee Market Report March 2024 ICO, 2023; https://icocoffee.org.
Tun, M. M., Raclavská, H., Juchelková, D., Růzicková, J., Safar, M., Strbová, K., Gikas, P. (2020). Spent coffee ground as renewable energy source: evaluation of the drying processes. J Environ Manage, 275, 111204. https://doi.org/10.1016/j.jenvman.2020.111204.
Barrios, C., Fernández-Delgado, M., López-Linares, J. C., García-Cubero, M. T., Coca, M., Lucas, S. (2022). A techno-economic perspective on a microwave extraction process for efficient protein recovery from agri-food wastes. Ind. Crops. Prod., 186, 115166. https://doi.org/10.1016/j.indcrop.2022.115166.
Nan, Z., Zhongyang, L., Ting, Y., Fujie, Y. (2024). Spent coffee grounds: Present and future of environmentally friendly applications on industries-A review. Trends in Food Science & Technology, 143, 104312. https://doi.org/10.1016/j.tifs.2023.104312.
Ринок кави в Україні - аналітичний огляд від Pro-Consulting спеціально для InVenture. pro-consulting.ua (укр.). https://pro-consulting.ua/ua/pressroom/rynok-kofe-v-ukraine-analiticheskij-obzor-ot-pro-consulting-specialno-dlya-inventure.
Coffee Consumption by Country 2024.
https://worldpopulationreview.com/country-rankings/coffee-consumption-by-country
Genming, L., Liquan, S., Pengke, Z., Yuzhu, W., Chencan, M., XinYu, S. (2020). Preparation and Identification of Carbon Materials from Coffee Grounds. Journal of Physics: Conference Series, 1622, 012047. http://doi.org/10.1088/1742-6596/1622/1/012047.
Cruz, R., Cardoso, M. M., Fernandes, L., Oliveira, M. (2012). Espresso coffee residues: a Valuable source of Unextracted Compounds. J Agri Food Chem, 60(32), 7777–7784. https://doi.org/10.1021/jf3018854.
Esquivel, P., Jime´nez, V. M. (2012). Functional properties of coffee and coffee by-products. Food Res Int, 46(2), 488–495. https://doi.org/10.1016/j.foodres.2011.05.028.
Campos-Vega, R., Oomah, B. D., Loarca-Pina, G., Vergara-Castaneda, H. A. (2013). Common beans and their non-digestible fraction: cancer inhibitory activitydan overview. Foods, 2(3), 374-392. https://doi.org/10.3390/foods2030374.
Campos-Vega, R., Loarca-Piña, G., Vergara-Castañeda, H. A., Oomah, B. D. (2015). Spent coffee grounds: a review on current research and future prospects. Trends Food Sci Technol, 45(1), 24–36. https://doi.org/10.1016/j.tifs.2015.04.012.
Iriondo-DeHond, A., Iriondo-DeHond, M., Del Castillo, M. D. (2020). Applications of compounds from coffee processing by-products. Biomolecules, 10, 1219. https://doi.org/10.3390/biom10091219.
Stylianou, M., Agapiou, A., Omirou, M., Vyrides, I., Ioannides, I. M., Maratheftis, G., Fasoula, D. (2018). Converting environmental risks to benefits by using spent coffee grounds (SCG) as a valuable resource. Environ. Sci. Pollut. Res. Int., 25, 35776–35790. https://doi.org/10.1007/s11356-018-2359-6.
Soloway, B. (2016). In Brazil’s Coffee Industry, Some Workers Face ‘Conditions Analogous to Slavery’. Foreign Policy. https://foreignpolicy.com/2016/04/13/in-brazils-coffee-industry-some-workers-face-conditions-analogous-to-slavery
Chanakya, H. N., De Alwis, A. A. P. (2004). Environmental issues and management in primary coffee processing. Process Saf. Environ. Prot., 82, 291–300.
https://doi.org/10.1205/095758204323162319.
Ding, M., Bhupathiraju, S. N., Satija, A., van Dam, R. M., Hu, F. B. (2014). Long-term coffee consumption and risk of cardiovascular disease: A systematic review and a dose-response meta-analysis of prospective cohort studies. Circulation, 129, 643–659. https://doi.org/10.1161/CIRCULATIONAHA.113.005925
Campos-Vega, R. (2016). Patent No. MX/a/2016008578. Proseco de obtencion de fibra dietaria antioxidante natural de subproductos mediante calentamiento ohmico y compuesto alto en fibra dietaria antioxidante natural de cafe usado.
Campos-Vega, R., Vázquez-Sánchez, K., Martinez-Saez, N., Castillo, M. (2016). Antioxidant coffee dietary fiber for gastrointestinal health and diabetes. In Proceedings of the 20th International Conference of FFC and 8th International Symposium of Academic Society of Functional Foods and Bioactive Compounds. Boston, MA, USA, 22–23 .
del Castillo, M. D., Ibanez, M. E., Amigo-Benavent, M., Herrero, M., Plaza, M., Ullate, M. (2011). Patent No. WO2013004873A1. Aplicacion de Pruductos de la Cascarilla del Cafe en Cosmetica Antienvejecimiento y Alimentacion Funcional.
Martinez-Saez, N., García, A. T., Pérez, I.D., Rebollo-Hernanz, M., Mesías, M., Morales, F. J., Martín-Cabrejas, M. A., Del Castillo, M. D. (2017). Use of spent coffee grounds as food ingredient in bakery products. Food Chem. 216, 114–122. https://doi.org/10.1016/j.foodchem.2016.07.173.
Vázquez-Sánchez, K., Martinez-Saez, N., Rebollo-Hernanz, M., Del Castillo, M. D., Gaytán-Martínez, M., Campos-Vega, R. (2018). In vitro health promoting properties of antioxidant dietary fiber extracted from spent coffee (Coffee arabica L.) grounds. Food Chem. 261, 253–259. https://doi.org/10.1016/j.foodchem.2018.04.064.
Sampaio, A., Dragone, G., Vilanova, M., Oliveira, J. M., Teixeira, J. A., Mussatto, S. I. (2013). Production, chemical characterization, and sensory profile of a novel spirit elaborated from spent coffee ground. LWT Food Sci. Technol., 54, 557–563. https://doi.org/10.1016/j.lwt.2013.05.042.
Kaffe Bueno ApS. Coffee Flour (Defatted Coffee Arabica Seed Powder) https://ec.europa.eu/food/sites/food/files/safety/docs/novel-food_sum_ongoing-app_2018-0698.pdf
Ballesteros, L. F., Teixeira, J. A., Mussatto, S. I. (2014). Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin. Food Bioprocess. Technol, 7, 3493–3503. https://doi.org/10.1007/s11947-014-1349-z.
Del Castillo, M. D., Fernandez-Gomez, B., Martinez-Saez, N., Iriondo-DeHond, A., Mesa, M. D. (2019). Coffee By-products (chapter 12). In Coffee: Production, Quality and Chemistry. Royal Society of Chemistry, 309–334. http://dx.doi.org/10.1039/9781782622437-00309
Janissen, B., Huynh, T. (2018). Chemical composition and value-adding applications of coffee industry by-products: A. review. Resour. Conserv. Recycl., 128, 110–117.
Campos-Vega, R., Loarca-Piña, G., Vergara-Castañeda, H. A., Oomah, B. D. (2015). Spent coffee grounds: A review on current research and future prospects. Trends Food Sci. Technol., 45, 24–36. http://dx.doi.org/10.1016/j.tifs.2015.04.012
Iriondo-DeHond, A., Cornejo, F. S., Fernandez-Gomez, B., Vera, G., Guisantes-Batan, E., Alonso, S.G., Andres, M. I. S., Sanchez-Fortun, S., Lopez-Gomez, L., Uranga, J. A., et al. (2019). Bioaccessibility, metabolism, and excretion of lipids composing spent coffee grounds. Nutrients, 11, 1411.
https://doi.org/10.3390/nu11061411.
Ramalakshmi, K., Rao, L. J. M., Takano-Ishikawa, Y., Goto, M. (2009). Bioactivities of low-grade green coffee and spent coffee in different in vitro model systems. Food Chem., 115, 79–85. http://dx.doi.org/10.1016/j.foodchem.2008.11.063.
Andrade, K. S., Gonçalvez, R. T., Maraschin, M., Ribeiro-do-Valle, R. M., Martínez, J., Ferreira, S. R. S. (2012). Supercritical fluid extraction from spent coffee grounds and coffee husks: Antioxidant activity and effect of operational variables on extract composition. Talanta, 88, 544–552. https://doi.org/10.1016/j.talanta.2011.11.031.
Lachenmeier, D. W., Schwarz, S., Teipel, J., Hegmanns, M., Kuballa, T., Walch, S. G., Breitling-Utzmann, C. M. (2018). Potential antagonistic effects of acrylamide mitigation during coffee roasting on furfuryl alcohol, furan and 5-hydroxymethylfurfural. Toxics, 7, 1. https://doi.org/10.3390/toxics7010001.
Pickard, S., Wilms, H., Richling, E. (2014). Alkylpyrazine contents of coffee beverages using stable isotope dilution gas chromatography–mass spectrometry. LWT Food Sci. Technol. 58, 188–193. https://doi.org/10.1016/j.lwt.2014.02.049.
Kremer, J. I., Pickard, S., Stadlmair, L. F., Glaß-Theis, A., Buckel, L., Bakuradze, T., Eisenbrand, G., Richling, E. (2019). Alkylpyrazines from coffee are extensively metabolized to pyrazine carboxylic acids in the human body. Mol. Nut. Food Res., e1801341. https://doi.org/10.1002/mnfr.201801341.
European Union. Summary of Applications and Notifications. https://ec.europa.eu/food/safety/novel_food/authorisations/summary-applications-and-notifications_en.
Hu, G. L., Wang, X., Zhang, L., Qiu, M. H. (2019). The sources and mechanisms of bioactive ingredients in coffee. Food Funct., 10, 3113–3126. https://doi.org/10.1039/C9FO00288J.
Wang, X., Wang, Y., Hu, G., Hong, D., Guo, T., Li, J., Li, Z., Qiu, M. (2022). Review on factors affecting coffee volatiles: From seed to cup. J. Sci. Food Agric., 102, 1341–1352.
https://doi.org/10.9734/CJAST/2023/v42i134112.
Claassen, L., Rinderknecht, M., Porth, T., Röhnisch, J., Seren, H. Y., Scharinger, A., Gottstein, V., Noack, D., Schwarz, S., Winkler, G., et al. (2021). Cold brew coffee—Pilot studies on definition, extraction, consumer preference, chemical characterization and microbiological hazards. Foods, 10, 865. https://doi.org/10.3390/foods10040865.
Moreira, A. S., Nunes, F. M., Domingues, M. R., Coimbra, M. A. (2012). Coffee melanoidins: Structures, mechanisms of formation and potential health impacts. Food Funct. 3, 903–915. https://doi.org/10.1039/c2fo30048f.
Iriondo-DeHond, A., Rodríguez Casas, A., Del Castillo, M. D. (2021). Interest of coffee melanoidins as sustainable healthier food ingredients. Front. Nutr. 8, 730343. https://doi.org/10.3389/fnut.2021.730343/
Schouten, M. A., Tappi, S., Romani, S. (2020). Acrylamide in coffee: Formation and possible mitigation strategies—A review. Crit. Rev. Food Sci. Nutr. 60, 3807–3821. https://doi.org/10.1080/10408398.2019.1708264.
Bomfim, A. S., de Oliveira, D. M., Walling, E., Babin, A., Hersant, G., Vaneeckhaute, C., Dumont, M. J., Rodrigue, D. (2022). Spent coffee grounds characterization and reuse in composting and soil amendment. Waste, 1, 2–20. https://doi.org/10.3390/waste1010002.
Olechno, E., Pus´cion-Jakubik, A., Zujko, M. E., Socha, K. (2021). Influence of various factors on caffeine content in coffee brews. Foods, 10, 1208. https://doi.org/10.3390/foods10061208.
Fuller, M., Rao, N. Z. (2017). The effect of time, roasting temperature, and grind size on caffeine and chlorogenic acid concentrations in cold brew coffee. Sci. Rep. 7, 17979. https://doi.org/10.1038/s41598-017-18247-4.
Angeloni, G., Guerrini, L., Masella, P., Bellumori, M., Daluiso, S., Parenti, A., Innocenti, M. (2019). What kind of coffee do you drink? An investigation on effects of eight different extraction methods. Food Res. Int. 116, 1327–1335. https://doi.org/10.1016/j.foodres.2018.10.022.
Ballesteros, L. F., Teixeira, J. A., Mussatto, S. I. (2014). Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin. Food Bioprocess Technol. 7(12), 3493–3503. https://doi.org/10.1007/s11947-014-1349-z.
Narita, Y., Inouye, K. (2014). Review on utilization and composition of coffee silverskin. Food Res Int, 61, 16–22. https://doi.org/10.1016/j.foodres.2014.01.023.
Kourmentza, C., Economou, C. N., Tsafrakidou, P., Kornaros, M. (2018). Spent coffee grounds make much more than waste: Exploring recent advances and future exploitation strategies for the valorization of an emerging food waste stream. J Clean Prod., 172, 980–992. https://doi.org/10.1016/j.jclepro.2017.10.088.
Bradbury, A. G., Halliday, D. J. (1990). Chemical structures of green coffee bean polysaccharides. Journal of Agricultural and Food Chemistry, 38(2), 389-392. https://doi.org/10.1021/jf00092a010.
Wei, F., Furihata, K., Koda, M., Hu, F., Miyakawa, T., Tanokura, M. (2012). Roasting process of coffee beans as studied by nuclear magnetic resonance: time course of changes in composition. Journal of Agricultural and Food Chemistry, 60(4), 1005-1012. https://doi.org/10.1021/jf205315r.
Illy, A., Viani, R. (1995). Espresso coffee: The chemistry of quality (1st ed.). New York: Academic Press, 105e106.
Nunes, F. M., Coimbra, M. A. (2010). Role of hydroxycinnamates in coffee melanoidin formation. Phytochemistry Reviews, 9(1), 171-185. https://doi.org/10.1007/s11101-009-9151-7.
Mussatto, S. I., Carneiro, L. M., Silva, J., Roberto, I. C., Teixeira, J. A. (2011). A study on chemical constituents and sugars extraction from spent coffee grounds. Carbohydrate Polymers, 83(2), 368-374. https://doi.org/10.1016/j.carbpol.2010.07.063.
Simões, J., Nunes, F., Domingues, R., Coimbra, M. (2013). Extractability and structure of spent coffee ground polysaccharides by roasting pre-treatments. Carbohydrate Polymers, 97(1), 81-9. https://doi.org/10.1016/j.carbpol.2013.04.067.
Prajapati, V. D., Jani, G. K., Moradiya, N. G., Randeria, N. P., Nagar, B. J., Naikwadi, N. N., et al. (2013). Galactomannan: a versatile biodegradable seed polysaccharide. International Journal of Biological Macromolecules, 60, 83–92. https://doi.org/10.1016/j.ijbiomac.2013.05.017.
Mussatto, S. I., Machado, E., Carneiro, L. M., Teixeira, J. A. (2012). Sugars metabolism and ethanol production by different yeast strains from coffee industry wastes hydrolysates. Applied Energy, 92, 763-768. https://doi.org/10.1016/j.apenergy.2011.08.020.
Simoes, J., Madureira, P., Nunes, F. M., Domingues, M. R., Vilanova, M., Coimbra, M. A. (2009). Immunostimulatory properties of coffee mannans. Molecular Nutrition & Food Research, 53(8), 1036-1043 https://doi.org/10.1002/mnfr.200800385.
Stahl, H., Bayha, R., Fulger, C. V. (1984). U.S. Patent 4484012. Production of mannitol and higher manno-saccharide alcohols.
Asano, I., Nakamura, Y., Hoshino, H., Aoki, K., Fujii, S., Imura, N., et al. (2001). Use of mannooligosaccharides from coffee mannan by intestinal bacteria. Nippon Nogeikagaku Kaishi, 75(10), 1077–1083. https://doi.org/10.1002/mnfr.200800385.
Takao, I., Fujii, S., Ishii, A., Han, L., Kumao, T., Ozaki, K., et al. (2006). Effects of mannooligosaccharides from coffee mannan on fat storage in mice fed a high fat diet. Journal of Health Science Tokyo, 52(3), 333. https://doi.org/10.3136/fstr.10.93.
Vardon, D. R., Moser, B. R., Zheng, W., Witkin, K., Evangelista, R. L., Strathmann, T. J., et al. (2013). Complete utilization of spent coffee grounds to produce biodiesel, bio-oil, and biochar. ACS Sustainable Chemistry & Engineering, 1(10), 1286e1294. https://doi.org/10.1021/sc400145w.
Murthy, P. S., Naidu, M. M. (2012). Recovery of phenolic antioxidants and functional compounds from coffee industry byproducts. Food and Bioprocess Technology, 5(3), 897e903. https://doi.org/10.1007/s11947-010-0363-z.
Belitz, H. D., Grosch, H., Schieberte, P. (2004). Food chemistry. Berlin, Germany: Springer, 939-969.
Cruz, R., Cardoso, M. M., Fernandes, L., Oliveira, M., Mendes, E., Baptista, P., et al. (2012). Espresso coffee residues: a valuable source of unextracted compounds. Journal of Agricultural and Food Chemistry, 60(32), 7777e7784. https://doi.org/10.1021/jf3018854.
Gao, L., Volpe, M., Lucian, M., Fiori, L., Goldfarb, J. L. (2019). Does hydrothermal carbonization as a biomass pretreatment reduce fuel segregation of coal-biomass blends during oxidation? Energy Convers Manag, 181, 93–104. https://doi.org/10.1016/j.enconman.2018.12.009
Franca, A. S., Oliveira, L. S. (2022). Potential uses of spent Coffee Grounds in the Food Industry. Foods, 11(14), 2064. https://doi.org/10.3390/foods11142064.
Bevilacqua, E., Cruzat, V., Singh, I., Rose’Meyer, R. B., Panchal, S. K., Brown, L. (2023). The potential of spent Coffee Grounds in Functional Food Development. Nutrients, 15(4), 994. https://doi.org/10.3390/nu15040994.
Acuna, R., Bassuner, R., Beilinson, V., Cortina, H. (2002). Coffee seeds contain 11S storage proteins. Physiol Plant, 105(1), 122–131. https://doi.org/10.1034/j.1399-3054.1999.105119.x.
Master, P. B. Z., Macedo, R. C. O. (2021). Effects of Dietary Supplementation in Sport and Exercise: a review of evidence on milk proteins and amino acids. Crit Rev Food Sci Nutr, 61, 1225–1239. https://doi.org/10.1080/10408398.2020.1756216.
Bhattarai, R. R., Al-Ali, H., Johnson, S. K. (2022). Extraction, isolation and nutritional quality of coffee protein. Foods, 11(20), 3244. https://doi.org/10.3390/foods11203244.
Battista, F., Zuliani, L., Rizzioli, F., Fusco, S., Bolzonella, D. (2021). Biodiesel, biogas and fermentable sugars production from spent coffee grounds: a cascade biorefinery approach. Biores Technol, 342, 125952. https://doi.org/10.1016/j.biortech.2021.125952.
Oliva, A., Tan, L. C., Papirio, S., Esposito, G., Lens, P. N. L. (2022). Use of N-Methylmorpholine N-Oxide (NMMO) pretreatment to enhance the bioconversion of lignocellulosic residues to methane. Biomass Conv Bioref. https://doi.org/10.1007/s13399-022-03173-x.
Olechno, E., Puścion-Jakubik, A., Zujko, M. E., Socha, K. (2021). Influence of various factors on Caffeine Content in Coffee Brews. Foods, 10(6), 1208. https://doi.org/10.3390/foods10061208.
Roukas, T., Kotzekidou, P. (2022). From food industry wastes to second generation bioethanol: a review. Rev Environ Sci Biotechnol, 21, 299–329. https://doi.org/10.1007/s11157-021-09606-9.
Wu, C. T., Agrawal, D. C., Huang, W. Y., Hsu, H. C., Yang, S. J., Huang, S. L., Lin, Y. S. (2019). Functionality analysis of spent coffee ground extracts obtained by the hydrothermal method. J Chem, 4671438. https://doi.org/10.1155/2019/4671438.
Ramirez, K., Pineda-Hidalgo, K. V., Rochin-Medina, J. J. (2021). Fermentation of spent coffee grounds by Bacillus clausii induces release of potentially bioactive peptides. LWT Food Sci Technol, 138, 110685. https://doi.org/10.1016/j.lwt.2020.110685.
Valdés, A., Castro-Puyana, M., Marina, M. L. (2020). Isolation of proteins from spent coffee grounds. Polyphenol removal and peptide identification in the protein hydrolysates by RP-HPLC-ESI-Q-TOF. Food Res Int, 137, 109368. https://doi.org/10.1016/j.foodres.2020.109368.
Samsalee, N., Sothornvit, R. (2021). Physicochemical, functional properties and antioxidant activity of protein extract from spent coffee grounds using ultrasonic-assisted extraction. AIMS Agric Food, 6(3), 864–878. https://doi.org/10.3934/agrfood.2021052.
Ribeiro, E., de Souza Rocha, T., Prudencio, S. H. (2021). Potential of green and roasted coffee beans and spent coffee grounds to provide bioactive peptides. Food Chem, 348, 129061. https://doi.org/10.1016/j.foodchem.2021.129061.
Febrianto, N. A. (2018). Liberation of protein and antioxidative compound from spent coffee ground through protein hydrolysis. Res Journal, 34(2), 95–103. https://doi.org/10.22302/iccri.jur.pelitaperkebunan.v34i2.318.
Ginz, M., Balzer, H. H., Bradbury, A. G. W., Maier, H. (2000). Formation of aliphatic acids by carbohydrate degradation during roasting of coffee. Eur Food Res Technol, 211, 404–410. https://doi.org/10.1007/s002170000215.
Iriondo-DeHond, A., Casas, A. R., del-Castillo, M. D. (2021). Interest of coffee melanoidins as sustainable healthier food ingredients. Front Nutr, 8, 730343. https://doi.org/10.3389/fnut.2021.730343.
Rufián-Henares, J. A., de la Cueva, S. P. (2009). Antimicrobial activity of Coffee Melanoidins A Study of their metal-chelating Properties. J Agric Food Chem, 57(2), 432–438. https://doi.org/10.1021/jf8027842.
Belitz, H. D., Grosch, H., Schieberte, P. (2004). Food chemistry. Berlin, Germany: Springer, 939е969.
Mussatto, S. I., Ballesteros, L. F., Martins, S., Teixeira, J. A. (2011). Extraction of antioxidant phenolic compounds from spent coffee grounds. Separation and Purification Technology, 83, 173–179. https://doi.org/10.1016/j.seppur.2011.09.036.
Silva, V. M., Vieira, G. S., Hubinger, M. D. (2014). Influence of different combinations of wall materials and homogenisation pressure on the microencapsulation of green coffee oil by spray drying. Food Research International, 61, 132-143. http://dx.doi.org/10.1016/j.foodres.2014.01.052.
Arya, M., Rao, L. J. M. (2007). An impression of coffee carbohydrates. Critical reviews in Food Science and Nutrition, 47(1), 51–67. https://doi.org/10.11598/btb.2023.30.3.1940.
Delgado, P. A., Vignoli, J. A., Siika-aho, M., Franco, T. T. (2008). Sediments in coffee extracts: composition and control by enzymatic hydrolysis. Food Chemistry, 110(1), 168–176. https://doi.org/10.1016/j.foodchem.2008.01.029.
Lago, R. C. A., Antoniassi, R., Freitas, S. C. (2001). Centesimal composition and amino acids of raw, roasted and spent ground of soluble coffee. In II Simposio de Pesquisa dos Cafes do Brasil Vitoria, ES. Resumos, 104.
Ravindranath, R., Khan, R., Obi Reddy, T., ThirumalaRao, S. D., Reddy, B. R. (1972). Composition and characteristics of Indian coffee bean, spent grounds and oil. Journal of the Science of Food and Agriculture, 23(3), 307-310. https://doi.org/10.1002/jsfa.2740230306.
Rogers, W. J., Bezard, G., Deshayes, A., Meyer, I., Petiard, V., Marraccini, P. (1999). Biochemical and molecular characterization and expression of the 11S-type storage protein from Coffea Arabica endosperm. Plant Physiology and Biochemistry, 37(4), 261-272. https://doi.org/10.1016/S0981-9428(99)80024-2.
Karr-Lilienthal, L. K., Kadzere, C. T., Grieshop, C. M., Fahey, G. C., Jr. (2005). Chemical and nutritional properties of soybean carbohydrates as related to nonruminants: a review. Livestock Production Science, 97(1), 1-12. https://doi.org/10.1016/j.livprodsci.2005.01.015.
Elıas, L. G. (1979). Chemical composition of coffee-berry by-products. In J. E. Brahman, & R. Bressani (Eds.), Coffee pulp composition, technology, and utilization. Ottawa, Canada: International Development Research Centre, 11–16.
https://doi.org/10.12691/jfnr-7-9-2.
Oestreich-Janzen, S. (2010). Chemistry of coffee. In L. Mander, & H.-W. Liu (Eds.), Comprehensive natural products II chemistry and biology. Development & modification of bioactivity. Oxford, UK: Elsevier, 3, 1085–1117.
Tello, J., Viguera, M., Calvo, L. (2011). Extraction of caffeine from Robusta coffee (Coffeacanephora var. Robusta) husks using supercritical carbon dioxide. The Journal of Supercritical Fluids, 59, 53–60. https://doi.org/10.1016/j.supflu.2011.07.018.
Murthy, P. S., Naidu, M. M. (2012). Sustainable management of coffee industry by-products and value addition. A review. Resources, Conservation and Recycling, 66, 45–58. https://doi.org/10.1016/j.resconrec.2012.06.005.
Andrade, K. S., Gonc¸alvez, R. T., Maraschin, M., Ribeiro-doValle, R. M., Martınez, J., Ferreira, S. R. (2012). Supercritical fluid extraction from spent coffee grounds and coffee husks: antioxidant activity and effect of operational variables on extract composition. Talanta, 88, 544–552. https://doi.org/10.1016/j.talanta.2011.11.031.
Ramalakshmi, K., Rao, L., Takano-Ishikawa, Y., Goto, M. (2009). Bioactivities of low-grade green coffee and spent coffee in different in vitro model systems. Food Chemistry, 115(1), 79–85. https://doi.org/10.1016/j.foodchem.2008.11.063.
Saldana, M. D., Mohamed, R. S., Baer, M. G., Mazzafera, P. (1999). Extraction of purine alkaloids from mate (Ilex paraguariensis) using supercritical CO2. Journal of Agricultural and Food Chemistry, 47(9), 3804-3808. https://doi.org/10.1021/jf981369z.
Ramalakshmi, K., Rao, L., Takano-Ishikawa, Y., Goto, M. (2009). Bioactivities of low-grade green coffee and spent coffee in different in vitro model systems. Food Chemistry, 115(1), 79-85. https://doi.org/10.1016/j.foodchem.2008.11.063
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Oles Honchar Dnipro National University
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).