STUDY ON TNT TOXIC EFFECTS ON THE FUNCTIONAL STATE OF HYDROBIONTS IN THE MODEL CONTAMINATED WATER POND

Authors

DOI:

https://doi.org/10.15421/jchemtech.v32i3.310257

Keywords:

TNT, aquatic organisms, toxicity, GST, POL, erythrocytes pathologies

Abstract

TNT (2,4,6-trinitrotoluene) and its derivatives make a significant contribution to the pollution of the water environment caused by hostilities in Ukraine, but the effects of TNT on hydrobionts have been little studied. In a model experiment, the effect of TNT in concentrations of 10 –75 mg/L on the mortality rate of Daphnia magna crustaceans was observed during 96 hours, and LD50 = 41.8 mg/L was calculated. Impact of TNT on Carassius gibelio fish metabolic processes and red blood cells characteristics were studied during chronic (21 days at a dose of 5 mg/L) and acute (eight hours at a dose of 35 mg/L) experiments. A sharp increase in lipid peroxidation and glutathione S-transferase activity were recorded in the blood and spleen of Carassius gibelio during the chronic TNT action indicating the state of power oxidative stress and detoxification mechanisms activation. Both chronic and acute exposure to TNT caused an increase in the destructive changes in red blood cells of Carassius gibelio as compared to control, including size and shape variation, decreased hemoglobin content, nuclear shift, and cell division disruption. Cytoplasmic vacuolization in fish erythrocytes was detected under the influence of both TNT concentrations, while karyolysis only under acute exposure. The obtained data testify to the severe pathological consequences of 2,4,6-trinitrotoluene impact on the viability and functional state of aquatic organisms under the model conditions and dictate the need to conduct similar studies in the natural polluted aquatic ecosystems to identify ways of their restoration. 

References

Schillinger, J., Özerol, G., Güven‐Griemert, Ş., Heldeweg, M. (2020). Water in war: Understanding the impacts of armed conflict on water resources and their management. WIREs Water. 7(2), e1480. https://doi.org/10.1002/wat2.1480

Sharamok, T., Ananieva, T., Fedonenko, O. (2017). Environmental status of Kam’yanske reservoir (Ukraine). Ekológia (Bratislava), 36(3), 281–289. https://doi.org/10.1515/eko-2017-0023

[Digest of the key consequences of Russian aggression for the Ukrainian environment for July 7-13, 2022: the official website of the Ministry of Environmental Protection and Natural Resources] (in Ukrainian). https://mepr.gov.ua/news/39409.html.

POST-DISASTER NEEDS ASSESSMENT (PDNA). October 2023. Government of Ukraine and the United Nations. https://ukraine.un.org/sites/default/files/2023-10/PDNA%20Final%20and%20Cleared%20-%2016Oct.pdf

Alpatova, О., Maksymenko, I., Patseva, I., Khomiak, I., Gandziura, V. (2022). Hydrochemical state of the post-military operations water ecosystems of the Moschun, Kyiv region. 16th Int. Conf. Monitoring of Geological Processes and Ecological Condition of the Environment, 1–5. https://doi.org/10.3997/2214-4609.2022580145

Tsyhanenko-Dziubenko, I., Kireitseva, H., Demchuk, L. (2023). Dynamics of Heavy Metal Compounds Allocation in Urbohydrotops of Kyiv Region in Post-Military Conditions. 17th Int. Conf. Monitoring of Geological Processes and Ecological Condition of the Environment, 1–5. https://doi.org/10.3997/2214-4609.2023520066

Maser, E., Andresen, K., Bünning, T., Clausen, O., Wichert, U., Strehse, J. (2023). Ecotoxicological Risk of World War Relic Munitions in the Sea after Low- and High-Order Blast-in-Place Operations. Environ. Sci. Technol. 57(48), 20169–20181. https://doi.org/10.1021/acs.est.3c04873

Bergmann, S., Brenner, M., Strehse, J., Büning, T., Maser, E., Grassel, P., Heuskin, D., Brandt, D., Berger, M., van der Wulp, S., Skellhorn, M., Hill, P., Van Haelst, S., De Rijcke, M., Wichert, U. (2024). Risk assessment of war wrecks - a comprehensive approach investigating four wrecks containing munitions in the German Bight/North Sea. Propellants, Explos., Pyrotech,. 49, e202300322. https://doi.org/10.1002/prep.202300322

Beck, A., Gledhill, M., Kampmeier, M., Feng, C., Schlosser, C., Greinert, J., Achterberg, E. (2022). Explosives compounds from sea-dumped relic munitions accumulate in marine biota. Sci. Total Environ., 806(Pt 4), 151266. https://doi.org/10.1016/j.scitotenv.2021.151266

Maser, E., Bünning, T., Strehse, J. (2024). Environmental and human toxicology studies on explosive chemicals leaking from submerged munitions. Propell Explos Pyrot., 49(4), e202300181. https://doi.org/10.1002/prep.202300181

Esteve-Núñez, A., Caballero, A., Ramos, J.L. (2001). Biological degradation of 2,4,6-trinitrotoluene. Microbiol Mol Biol Rev., 65(3), 335–352. https://doi.org/10.1128/mmbr.65.3.335-352.2001

Lynch, J.C., Myers, K.F., Brannon, J.M., Delfino, J.J. (2001). Effects of pH and temperature on the aqueous solubility and dissolution rate of 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-l,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-l,3,5,7-tetrazocine (HMX). JCED, 46(6), 1549–1555. http://dx.doi.org/10.1021/je0101496

Xu, M., He, L., Sun, P., Wu, M., Cui, X., Liu, D., Adomako-Bonsu, A.G., Geng, M., Xiong, G., Guo, L., Maser, M. (2023). Critical Role of Monooxygenase in Biodegradation of 2,4,6-Trinitrotoluene by Buttiauxella sp. S19-1. Molecules, 28(4), 1969. https://doi.org/10.3390/molecules28041969

Rosen, G., Lotufo, G., Belden, J., George, R. (2022). Environmental Characterization of Underwater Munitions Constituents at a Former Military Training Range. Environ. Toxicol. Chem., 41(2), 275–286. https://doi.org/10.1002/etc.5112

Scharsack, J., Koske, D., Straumer, K., Kammann, U. (2021). Effects of climate change on marine dumped munitions and possible consequence for inhabiting biota. Environ Sci Eur., 33, 102. https://doi.org/10.1186/s12302-021-00537-4

Aamir, M., Irum, S., Siddiq, A., Batool, H., Ahmed, N., Awais, M., Ali, S. (2022). A novel method development and validation for determination of 2,4,6-Trinitrotoluene and its metabolites on LC-MS/MS. Anal. Biochem., 638, 114496. https://doi.org/10.1016/j.ab.2021.114496

Bünning, T., Strehse, J., Hollmann, A., Bötticher, T., Maser, E. (2021). A Toolbox for the Determination of Nitroaromatic Explosives in Marine Water, Sediment, and Biota Samples on Femtogram Levels by GC-MS/MS. Toxics, 9(3), 60. https://doi.org/10.3390/toxics9030060

Mishra, S., Marutheeswaran, S., Roy, S., Natarajan, V., Rai, P., Nanda, B. (2021). Adsorption and degradation mechanism of 2,4,6-trinitrotoluene on TiO2 (110) surface. Surf. Sci., 713. 121902. https://doi.org/10.1016/j.susc.2021.121902

Nguyen, H., Pham, S., Vu, T., Nguyen, H., La, D. (2024). Effective treatment of 2,4,6-trinitrotoluene from aqueous media using a sono-photo-Fenton-like process with a zero-valent iron nanoparticle (nZVI) catalyst. RSC Adv., 14, 23720–23729. https://doi.org/10.1039/d4ra03907f

Yang, H., Zhou, M., Li, H., Liu, L., Zhou, Y., Long, X. (2019). Collective absorption of 2,4,6-trinitrotoluene into lipid membranes and its effects on bilayer properties. A computational study. RSC Advances, 9(67), 39046–39054. https://doi.org/10.1039/c9ra08408h

Khromykh, N.O., Marenkov, O.M., Sharamok, T.S., Anishchenko, A.O., Yesipova, N. B., Nesterenko, O. S., Kurchenko, V. O., Mylostyvyi, R. V. (2023). Simulating TNT (2,4,6-trinitrotoluene) elimination in the water pond inhabited by freshwater alga of the Rhizoclonium genus. Regulatory Mechanisms in Biosystems, 14(3), 365–369. https://doi.org/10.15421/10.15421/022354

Ownby, D.R., Belden, J.B., Lotufo, G.R., Lydy, M.J. (2005). Accumulation of trinitrotoluene (TNT) in aquatic organisms: part 1--Bioconcentration and distribution in channel catfish (Ictalurus punctatus). Chemosphere, 58(9), 1153–1159. https://doi.org/10.1016/j.chemosphere.2004.09.059

Ek, H., Dave, G., Sturve, J., Almroth, B.C., Stephensen, E., Förlin, L., Birgersson, G. (2005). Tentative biomarkers for 2,4,6-trinitrotoluene (TNT) in fish (Oncorhynchus mykiss). Aquat Toxicol., 72(3), 221–230. https://doi.org/10.1016/j.aquatox.2005.01.001

Della Torre, C., Corsi, I., Arukwe, A., Alcaro, L., Amato, E., Focardi, S. (2008). Effects of 2,4,6-trinitrotoluene (TNT) on phase I and phase II biotransformation enzymes in European eel Anguilla anguilla (Linnaeus, 1758). Marine Environmental Research, 66(1), 9–11. http://dx.doi.org/10.1016/j.marenvres.2008.02.008

Lin, H., Lin, F., Yuan, J., Cui, F., Chen, J. (2021). Toxic effects and potential mechanisms of Fluxapyroxad to zebrafish (Danio rerio) embryos. Sci. Total Environ., 769, 144519. https://doi.org/10.1016/j.scitotenv.2020.144519

Witeska, M., Kondera, E., Bojarski, B. (2023). Hematological and Hematopoietic Analysis in Fish Toxicology – A Review. Animals, 13(16), 2625. https://doi.org/10.3390/ani13162625

Martinez-Alvarez, R. M., Morales, A. E., Sanz, A. (2005). Antioxidant defenses in fish: biotic and abiotic factors. Rev Fish Biol Fisheries, 15(1), 75–88. https://doi.org/10.1007/s11160-005-7846-4

Shi, F., Yao, M., Huang, Y., Chen, Z., Xiao, J., Zhan, F., Li, Y., Lin, L., Qin, Z. (2023). Effects of antibiotics on immunity and apoptosis on grass carp liver and hepatocytes. J. Environ. Chem. Eng., 11(3), 110168. https://doi.org/10.1016/j.jece.2023.110168

Gaschler, M.M., Stockwell, B.R. (2017). Lipid peroxidation in cell death. BBRC, 482(3), 419–425. https://doi.org/10.1016/j.bbrc.2016.10.086

Tsikas, D. (2017). Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: analytical and biological challenges. Anal. Biochem., 524, 13–30. https://doi.org/10.1016/j.ab.2016.10.021

Mas-Bargues, C., Escrivá, C., Dromant, M., Borrás, C., Viña, J. (2021). Lipid peroxidation as measured by chromatographic determination of malondialdehyde. Human plasma reference values in health and disease. ABB, 709, 108941. https://doi.org/10.1016/j.abb.2021.108941

Garcia, D., Lima, D., da Silva, D.G.H., de Almeida, E.A. (2020). Decreased malondialdehyde levels in fish (Astyanax altiparanae) exposed to diesel: Evidence of metabolism by aldehyde dehydrogenase in the liver and excretion in water. Ecotoxicol. Environ. Saf., 190, 110107. https://doi.org/10.1016/j.ecoenv.2019.110107

Hamed, R.R., Saleh, N.S., Shokeer, A., Guneidy, R.A., Abdel-Ghany, S.S. (2016). Glutathione and its related enzymes in the gonad of Nile Tilapia (Oreochromis niloticus). Fish Physiol Biochem., 2(1), 353–363. https://doi.org/10.1007/s10695-015-0143-9

Della Torre, C., Corsi, I., Arukwe, A., Valoti, M., Focardi, S. (2008). Interactions of 2,4,6-trinitrotoluene (TNT) with xenobiotic biotransformation system in European eel Anguilla anguilla (Linnaeus, 1758). Ecotoxicol. Environ. Saf., 71(3), 798–805. https://doi.org/10.1016/j.ecoenv.2008.03.003

Jenkins, T.F., Walsh, M.E. (1992). Development of field screening methods for TNT, 2,4-DNT and RDX in soil. Talanta, 39(4), 419–428. https://doi.org/10.1016/0039-9140(92)80158-A

Arsan, O.M., Davydov, O.A., Dyachenko, T.M., Yevtushenko, M.Y., Zhukynski, V.M., Kyrpenko, N.I., Yakushyn, V.M. (2006). [Methods of hydro ecological research of surface waters]. Ed. by Romanenko, V.D. Kyiv: Logos, 340 – 359 (in Ukrainian).

Kröger, M., Fels, G. (2000). 14C-TNT synthesis revisited. Journal of Labelled Compounds and Radiophar-maceuticals, 43(3), 217–227. https://doi.org/10.1002/(SICI)1099-1344(20000315)43:3%3C217::AID-JLCR305%3E3.0.CO;2-U

Кurchenko, V., Sharamok, T. (2020). The Hematological Parameters of the Prussian Carp (Carassius gibelio Bloch, 1782) Under the Zaporizhian (Dnipro) Reservoir Conditions. Turk. J. Fish. & Aquat. Sci., 20(11), 807–812. http://doi.org/10.4194/1303-2712-v20_11_04

Davydov, O.N., Temnikhanov, Y. D., Kurovska, L.Y. (2006). [Pathology of fish blood]. Kyiv: Ukrainski fitositsiologicheski tsentr, 46–47 (in Ukrainian).

Habig, W.H., Jakoby, W.B. (1981). Assays for differentiation of glutathione S-transferases. Meth Enzymol., 77, 398–405. https://doi.org/10.1016/s0076-6879(81)77053-8

Regulations on the Committee on Ethics (Bioethics): Regulatory document of the Ministry of Education, Science, Youth and Sports of Ukraine. Order dated 19.11.2012 No. 1287). http://www.mon.gov.ua/ua/activity/63/64/normativno-pravova-baza/

Hansson, T., Schiedek, D., Lehtonen, K.K., Vuorinen, P.J., Liewenborg, Noaksson, E., Tjarnlund, U., Hansson, M., Balk L. (2006). Biochemical biomarkers in adult female perch (Perca fluviatilis) in a chronically polluted gradient in the Stockholm recipient (Sweden). Mar. Pollut. Bull., 53(8-9), 451–468. https://doi.org/10.1016/j.marpolbul.2006.04.014

Marenkov, O. M., Izhboldina, O. O., Nazarenko, M. M., Mylostyvyi, R. V., Khramkova, O. M., Kapshuk, N. O., Prychepa M. V., Nesterenko, O. S. (2021). Influence of heavy metals on physiological and biochemical parameters of Pseudorasbora parva (Cypriniformes, Cyprinidae). Regul Mech Biosyst., 12(4), 745–752. https://doi.org/10.15421/0221103

Dias de Moraes, F., Perri Venturini, F., Rossi, P.A., Marchioni Avilez, I., da Silva de Souza, N.E., Moraes, G. (2018). Assessment of biomarkers in the neotropical fish Brycon amazonicus exposed to cypermethrin based insecticide. Ecotoxicology, 27, 188–197. https://doi.org/10.1007/s10646-017-1884-2

Kaur, K., Kaur, A. (2015). Fish erythrocytes as biomarkers for the toxicity of sublethal doses of an azo dye, Basic violet-1 (CI: 42535). Microscopy and Microanalysis, 21(1), 264–273. https://doi.org/10.1017/S1431927614013609

Pomortseva, N. A., Rodionova, N. K., Gudkov, D. I., Kaglyan O. Y. (2024). Quantitative and Qualitative Composition of the Peripheral Blood of Fish in the Gradient of Long-Term Radiation Exposure. Hydrobiological Journal, 60(1), 84–100. https://doi.org/10.1615/HydrobJ.v60.i1.60

Ahmed, I., Reshi, Q.M., Fazio, F. (2022). The influence of the endogenous and exogenous factors on hematological parameters in different fish species: a review. Aquacult Int., 28, 869–899. https://doi.org/10.1007/s10499-019-00501-3.

Bardhan, A., Abraham, T.J., Das, R., Patil, P. (2024). Visualization of poikilocytosis as an emerging erythrocytic biomarker for fish health assessment. AROH, 2(2), 136–157. https://doi.org/10.1002/aro2.47

Shahjahan, Md., Rahman, M., Islam, S. M. M., Uddin, Md. H., Al-Emran, Md. (2019). Increase in water temperature increases acute toxicity of sumithion causing nuclear and cellular abnormalities in peripheral erythrocytes of zebrafish Danio rerio. Environ Sci Pollut Res Int., 26(36), 36903–36912. https://doi.org/10.1007/s11356-019-06886-1

Fazio, F. (2019). Fish hematology analysis as an important tool of aquaculture: A review. Aquaculture, 500, 237–242. https://doi.org/10.1016/j.aquaculture.2018.10.030

Javed, M., Ahmad, I., Ahmad, A., Usmani, N., Ahmad, M. (2016). Studies on the alterations in hematological indices, micronuclei induction and pathological marker enzyme activities in Channa punctatus (spotted snakehead) perciformes, channidae exposed to thermal power plant effluent. SpringerPlus, 5, 761. https://doi.org/10.1186/s40064-016-2478-9

Omar, W.A., Zaghloul, K.H., Abdel-Khalek, A.A., Abo-Hegab, S. (2012). Genotoxic effects of metal pollution in two fish species, Oreochromis niloticus and Mugil cephalus, from highly degraded aquatic habitats. MRGTEM, 746(1), 7–14. https://doi.org/10.1016/j.mrgentox.2012.01.013

Pomortseva, N. A., Gudkov, D. I. (2019). Effect of additional acute irradiation on cytomorphological abnormalities of erythrocytes of the Prussian carp (Carassius gibelio Bloch) from water body contaminated with radionuclides. Problems of Radiation Medicine & Radiobiology, 24, 270–283. http://dx.doi.org/10.33145/2304-8336-2019-24-270-283

Nemkov, T., Qadri, S. M., Sheffield, W. P., D’Alessandro, A. (2020). Decoding the metabolic landscape of pathophysiological stress-induced cell death in anucleate red blood cells. Blood Transfus., 18(2), 130–142. https://doi.org/10.2450/2020.0256-19

Schillinger, J., Özerol, G., Güven‐Griemert, Ş., Heldeweg, M. (2020). Water in war: Understanding the impacts of armed conflict on water resources and their management. WIREs Water. 7(2), e1480. https://doi.org/10.1002/wat2.1480

Sharamok, T., Ananieva, T., Fedonenko, O. (2017). Environmental status of Kam’yanske reservoir (Ukraine). Ekológia (Bratislava), 36(3), 281–289. https://doi.org/10.1515/eko-2017-0023

[Digest of the key consequences of Russian aggression for the Ukrainian environment for July 7-13, 2022: the official website of the Ministry of Environmental Protection and Natural Resources] (in Ukrainian). https://mepr.gov.ua/news/39409.html.

POST-DISASTER NEEDS ASSESSMENT (PDNA). October 2023. Government of Ukraine and the United Nations. https://ukraine.un.org/sites/default/files/2023-10/PDNA%20Final%20and%20Cleared%20-%2016Oct.pdf

Alpatova, О., Maksymenko, I., Patseva, I., Khomiak, I., Gandziura, V. (2022). Hydrochemical state of the post-military operations water ecosystems of the Moschun, Kyiv region. 16th Int. Conf. Monitoring of Geological Processes and Ecological Condition of the Environment, 1–5. https://doi.org/10.3997/2214-4609.2022580145

Tsyhanenko-Dziubenko, I., Kireitseva, H., Demchuk, L. (2023). Dynamics of Heavy Metal Compounds Allocation in Urbohydrotops of Kyiv Region in Post-Military Conditions. 17th Int. Conf. Monitoring of Geological Processes and Ecological Condition of the Environment, 1–5. https://doi.org/10.3997/2214-4609.2023520066

Maser, E., Andresen, K., Bünning, T., Clausen, O., Wichert, U., Strehse, J. (2023). Ecotoxicological Risk of World War Relic Munitions in the Sea after Low- and High-Order Blast-in-Place Operations. Environ. Sci. Technol. 57(48), 20169–20181. https://doi.org/10.1021/acs.est.3c04873

Bergmann, S., Brenner, M., Strehse, J., Büning, T., Maser, E., Grassel, P., Heuskin, D., Brandt, D., Berger, M., van der Wulp, S., Skellhorn, M., Hill, P., Van Haelst, S., De Rijcke, M., Wichert, U. (2024). Risk assessment of war wrecks - a comprehensive approach investigating four wrecks containing munitions in the German Bight/North Sea. Propellants, Explos., Pyrotech,. 49, e202300322. https://doi.org/10.1002/prep.202300322

Beck, A., Gledhill, M., Kampmeier, M., Feng, C., Schlosser, C., Greinert, J., Achterberg, E. (2022). Explosives compounds from sea-dumped relic munitions accumulate in marine biota. Sci. Total Environ., 806(Pt 4), 151266. https://doi.org/10.1016/j.scitotenv.2021.151266

Maser, E., Bünning, T., Strehse, J. (2024). Environmental and human toxicology studies on explosive chemicals leaking from submerged munitions. Propell Explos Pyrot., 49(4), e202300181. https://doi.org/10.1002/prep.202300181

Esteve-Núñez, A., Caballero, A., Ramos, J.L. (2001). Biological degradation of 2,4,6-trinitrotoluene. Microbiol Mol Biol Rev., 65(3), 335–352. https://doi.org/10.1128/mmbr.65.3.335-352.2001

Lynch, J.C., Myers, K.F., Brannon, J.M., Delfino, J.J. (2001). Effects of pH and temperature on the aqueous solubility and dissolution rate of 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-l,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-l,3,5,7-tetrazocine (HMX). JCED, 46(6), 1549–1555. http://dx.doi.org/10.1021/je0101496

Xu, M., He, L., Sun, P., Wu, M., Cui, X., Liu, D., Adomako-Bonsu, A.G., Geng, M., Xiong, G., Guo, L., Maser, M. (2023). Critical Role of Monooxygenase in Biodegradation of 2,4,6-Trinitrotoluene by Buttiauxella sp. S19-1. Molecules, 28(4), 1969. https://doi.org/10.3390/molecules28041969

Rosen, G., Lotufo, G., Belden, J., George, R. (2022). Environmental Characterization of Underwater Munitions Constituents at a Former Military Training Range. Environ. Toxicol. Chem., 41(2), 275–286. https://doi.org/10.1002/etc.5112

Scharsack, J., Koske, D., Straumer, K., Kammann, U. (2021). Effects of climate change on marine dumped munitions and possible consequence for inhabiting biota. Environ Sci Eur., 33, 102. https://doi.org/10.1186/s12302-021-00537-4

Aamir, M., Irum, S., Siddiq, A., Batool, H., Ahmed, N., Awais, M., Ali, S. (2022). A novel method development and validation for determination of 2,4,6-Trinitrotoluene and its metabolites on LC-MS/MS. Anal. Biochem., 638, 114496. https://doi.org/10.1016/j.ab.2021.114496

Bünning, T., Strehse, J., Hollmann, A., Bötticher, T., Maser, E. (2021). A Toolbox for the Determination of Nitroaromatic Explosives in Marine Water, Sediment, and Biota Samples on Femtogram Levels by GC-MS/MS. Toxics, 9(3), 60. https://doi.org/10.3390/toxics9030060

Mishra, S., Marutheeswaran, S., Roy, S., Natarajan, V., Rai, P., Nanda, B. (2021). Adsorption and degradation mechanism of 2,4,6-trinitrotoluene on TiO2 (110) surface. Surf. Sci., 713. 121902. https://doi.org/10.1016/j.susc.2021.121902

Nguyen, H., Pham, S., Vu, T., Nguyen, H., La, D. (2024). Effective treatment of 2,4,6-trinitrotoluene from aqueous media using a sono-photo-Fenton-like process with a zero-valent iron nanoparticle (nZVI) catalyst. RSC Adv., 14, 23720–23729. https://doi.org/10.1039/d4ra03907f

Yang, H., Zhou, M., Li, H., Liu, L., Zhou, Y., Long, X. (2019). Collective absorption of 2,4,6-trinitrotoluene into lipid membranes and its effects on bilayer properties. A computational study. RSC Advances, 9(67), 39046–39054. https://doi.org/10.1039/c9ra08408h

Khromykh, N.O., Marenkov, O.M., Sharamok, T.S., Anishchenko, A.O., Yesipova, N. B., Nesterenko, O. S., Kurchenko, V. O., Mylostyvyi, R. V. (2023). Simulating TNT (2,4,6-trinitrotoluene) elimination in the water pond inhabited by freshwater alga of the Rhizoclonium genus. Regulatory Mechanisms in Biosystems, 14(3), 365–369. https://doi.org/10.15421/10.15421/022354

Ownby, D.R., Belden, J.B., Lotufo, G.R., Lydy, M.J. (2005). Accumulation of trinitrotoluene (TNT) in aquatic organisms: part 1--Bioconcentration and distribution in channel catfish (Ictalurus punctatus). Chemosphere, 58(9), 1153–1159. https://doi.org/10.1016/j.chemosphere.2004.09.059

Ek, H., Dave, G., Sturve, J., Almroth, B.C., Stephensen, E., Förlin, L., Birgersson, G. (2005). Tentative biomarkers for 2,4,6-trinitrotoluene (TNT) in fish (Oncorhynchus mykiss). Aquat Toxicol., 72(3), 221–230. https://doi.org/10.1016/j.aquatox.2005.01.001

Della Torre, C., Corsi, I., Arukwe, A., Alcaro, L., Amato, E., Focardi, S. (2008). Effects of 2,4,6-trinitrotoluene (TNT) on phase I and phase II biotransformation enzymes in European eel Anguilla anguilla (Linnaeus, 1758). Marine Environmental Research, 66(1), 9–11. http://dx.doi.org/10.1016/j.marenvres.2008.02.008

Lin, H., Lin, F., Yuan, J., Cui, F., Chen, J. (2021). Toxic effects and potential mechanisms of Fluxapyroxad to zebrafish (Danio rerio) embryos. Sci. Total Environ., 769, 144519. https://doi.org/10.1016/j.scitotenv.2020.144519

Witeska, M., Kondera, E., Bojarski, B. (2023). Hematological and Hematopoietic Analysis in Fish Toxicology – A Review. Animals, 13(16), 2625. https://doi.org/10.3390/ani13162625

Martinez-Alvarez, R. M., Morales, A. E., Sanz, A. (2005). Antioxidant defenses in fish: biotic and abiotic factors. Rev Fish Biol Fisheries, 15(1), 75–88. https://doi.org/10.1007/s11160-005-7846-4

Shi, F., Yao, M., Huang, Y., Chen, Z., Xiao, J., Zhan, F., Li, Y., Lin, L., Qin, Z. (2023). Effects of antibiotics on immunity and apoptosis on grass carp liver and hepatocytes. J. Environ. Chem. Eng., 11(3), 110168. https://doi.org/10.1016/j.jece.2023.110168

Gaschler, M.M., Stockwell, B.R. (2017). Lipid peroxidation in cell death. BBRC, 482(3), 419–425. https://doi.org/10.1016/j.bbrc.2016.10.086

Tsikas, D. (2017). Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: analytical and biological challenges. Anal. Biochem., 524, 13–30. https://doi.org/10.1016/j.ab.2016.10.021

Mas-Bargues, C., Escrivá, C., Dromant, M., Borrás, C., Viña, J. (2021). Lipid peroxidation as measured by chromatographic determination of malondialdehyde. Human plasma reference values in health and disease. ABB, 709, 108941. https://doi.org/10.1016/j.abb.2021.108941

Garcia, D., Lima, D., da Silva, D.G.H., de Almeida, E.A. (2020). Decreased malondialdehyde levels in fish (Astyanax altiparanae) exposed to diesel: Evidence of metabolism by aldehyde dehydrogenase in the liver and excretion in water. Ecotoxicol. Environ. Saf., 190, 110107. https://doi.org/10.1016/j.ecoenv.2019.110107

Hamed, R.R., Saleh, N.S., Shokeer, A., Guneidy, R.A., Abdel-Ghany, S.S. (2016). Glutathione and its related enzymes in the gonad of Nile Tilapia (Oreochromis niloticus). Fish Physiol Biochem., 2(1), 353–363. https://doi.org/10.1007/s10695-015-0143-9

Della Torre, C., Corsi, I., Arukwe, A., Valoti, M., Focardi, S. (2008). Interactions of 2,4,6-trinitrotoluene (TNT) with xenobiotic biotransformation system in European eel Anguilla anguilla (Linnaeus, 1758). Ecotoxicol. Environ. Saf., 71(3), 798–805. https://doi.org/10.1016/j.ecoenv.2008.03.003

Jenkins, T.F., Walsh, M.E. (1992). Development of field screening methods for TNT, 2,4-DNT and RDX in soil. Talanta, 39(4), 419–428. https://doi.org/10.1016/0039-9140(92)80158-A

Arsan, O.M., Davydov, O.A., Dyachenko, T.M., Yevtushenko, M.Y., Zhukynski, V.M., Kyrpenko, N.I., Yakushyn, V.M. (2006). [Methods of hydro ecological research of surface waters]. Ed. by Romanenko, V.D. Kyiv: Logos, 340 – 359 (in Ukrainian).

Kröger, M., Fels, G. (2000). 14C-TNT synthesis revisited. Journal of Labelled Compounds and Radiophar-maceuticals, 43(3), 217–227. https://doi.org/10.1002/(SICI)1099-1344(20000315)43:3%3C217::AID-JLCR305%3E3.0.CO;2-U

Кurchenko, V., Sharamok, T. (2020). The Hematological Parameters of the Prussian Carp (Carassius gibelio Bloch, 1782) Under the Zaporizhian (Dnipro) Reservoir Conditions. Turk. J. Fish. & Aquat. Sci., 20(11), 807–812. http://doi.org/10.4194/1303-2712-v20_11_04

Davydov, O.N., Temnikhanov, Y. D., Kurovska, L.Y. (2006). [Pathology of fish blood]. Kyiv: Ukrainski fitositsiologicheski tsentr, 46–47 (in Ukrainian).

Habig, W.H., Jakoby, W.B. (1981). Assays for differentiation of glutathione S-transferases. Meth Enzymol., 77, 398–405. https://doi.org/10.1016/s0076-6879(81)77053-8

Regulations on the Committee on Ethics (Bioethics): Regulatory document of the Ministry of Education, Science, Youth and Sports of Ukraine. Order dated 19.11.2012 No. 1287). http://www.mon.gov.ua/ua/activity/63/64/normativno-pravova-baza/

Hansson, T., Schiedek, D., Lehtonen, K.K., Vuorinen, P.J., Liewenborg, Noaksson, E., Tjarnlund, U., Hansson, M., Balk L. (2006). Biochemical biomarkers in adult female perch (Perca fluviatilis) in a chronically polluted gradient in the Stockholm recipient (Sweden). Mar. Pollut. Bull., 53(8-9), 451–468. https://doi.org/10.1016/j.marpolbul.2006.04.014

Marenkov, O. M., Izhboldina, O. O., Nazarenko, M. M., Mylostyvyi, R. V., Khramkova, O. M., Kapshuk, N. O., Prychepa M. V., Nesterenko, O. S. (2021). Influence of heavy metals on physiological and biochemical parameters of Pseudorasbora parva (Cypriniformes, Cyprinidae). Regul Mech Biosyst., 12(4), 745–752. https://doi.org/10.15421/0221103

Dias de Moraes, F., Perri Venturini, F., Rossi, P.A., Marchioni Avilez, I., da Silva de Souza, N.E., Moraes, G. (2018). Assessment of biomarkers in the neotropical fish Brycon amazonicus exposed to cypermethrin based insecticide. Ecotoxicology, 27, 188–197. https://doi.org/10.1007/s10646-017-1884-2

Kaur, K., Kaur, A. (2015). Fish erythrocytes as biomarkers for the toxicity of sublethal doses of an azo dye, Basic violet-1 (CI: 42535). Microscopy and Microanalysis, 21(1), 264–273. https://doi.org/10.1017/S1431927614013609

Pomortseva, N. A., Rodionova, N. K., Gudkov, D. I., Kaglyan O. Y. (2024). Quantitative and Qualitative Composition of the Peripheral Blood of Fish in the Gradient of Long-Term Radiation Exposure. Hydrobiological Journal, 60(1), 84–100. https://doi.org/10.1615/HydrobJ.v60.i1.60

Ahmed, I., Reshi, Q.M., Fazio, F. (2022). The influence of the endogenous and exogenous factors on hematological parameters in different fish species: a review. Aquacult Int., 28, 869–899. https://doi.org/10.1007/s10499-019-00501-3.

Bardhan, A., Abraham, T.J., Das, R., Patil, P. (2024). Visualization of poikilocytosis as an emerging erythrocytic biomarker for fish health assessment. AROH, 2(2), 136–157. https://doi.org/10.1002/aro2.47

Shahjahan, Md., Rahman, M., Islam, S. M. M., Uddin, Md. H., Al-Emran, Md. (2019). Increase in water temperature increases acute toxicity of sumithion causing nuclear and cellular abnormalities in peripheral erythrocytes of zebrafish Danio rerio. Environ Sci Pollut Res Int., 26(36), 36903–36912. https://doi.org/10.1007/s11356-019-06886-1

Fazio, F. (2019). Fish hematology analysis as an important tool of aquaculture: A review. Aquaculture, 500, 237–242. https://doi.org/10.1016/j.aquaculture.2018.10.030

Javed, M., Ahmad, I., Ahmad, A., Usmani, N., Ahmad, M. (2016). Studies on the alterations in hematological indices, micronuclei induction and pathological marker enzyme activities in Channa punctatus (spotted snakehead) perciformes, channidae exposed to thermal power plant effluent. SpringerPlus, 5, 761. https://doi.org/10.1186/s40064-016-2478-9

Omar, W.A., Zaghloul, K.H., Abdel-Khalek, A.A., Abo-Hegab, S. (2012). Genotoxic effects of metal pollution in two fish species, Oreochromis niloticus and Mugil cephalus, from highly degraded aquatic habitats. MRGTEM, 746(1), 7–14. https://doi.org/10.1016/j.mrgentox.2012.01.013

Pomortseva, N. A., Gudkov, D. I. (2019). Effect of additional acute irradiation on cytomorphological abnormalities of erythrocytes of the Prussian carp (Carassius gibelio Bloch) from water body contaminated with radionuclides. Problems of Radiation Medicine & Radiobiology, 24, 270–283. http://dx.doi.org/10.33145/2304-8336-2019-24-270-283

Nemkov, T., Qadri, S. M., Sheffield, W. P., D’Alessandro, A. (2020). Decoding the metabolic landscape of pathophysiological stress-induced cell death in anucleate red blood cells. Blood Transfus., 18(2), 130–142. https://doi.org/10.2450/2020.0256-19

Downloads

Published

2024-10-20