STUDY OF THE INTERACTION AT THE POLYCHLOROTRIFLUOROETHYLENE – CARBON FIBRE PHASE BOUNDARY
DOI:
https://doi.org/10.15421/jchemtech.v32i4.311650Keywords:
polytrifluorochlorethylene; carbon fibre; infrared spectral analysis; fluoroplastic F3; chemical bonds.Abstract
Aim. To investigate the chemical and physical interaction between the fluoropolymer matrix and the high-modulus Toray T700H carbon fibre to evaluate the functional characteristics of carbon plastics. Methods. We prepared carbon plastics based on polychlorotrifluoroethylene containing 5–20 wt.% Toray T700H carbon fibre by dry mixing them in an apparatus with a rotating electromagnetic field with the help of ferromagnetic particles. They were extracted later using the method of magnetic separation. We analysed the IR spectra using a Nicolet 380 (IR spectrometer from Thermo Electron Corporation, the USA). Results. We compared the spectra of powdered polychlorotrifluoroethylene and its finished product. Therefore, we determined changes in the chemical composition and molecular structure of the polymer during processing into products. The investigation shows that the carbon fibre of the studied brand exhibits low reactivity. We identified and analysed the results of IR-spectral studies of carbon plastics. Conclusions. We established the interaction between the fluoropolymer matrix and the carbon fibre. It manifests itself through the interaction between the double bonds of the terminal active groups and the oxygen-containing groups of polychlorotrifluoroethylenewith the Toray T700H carbon fibre. We can observe the strongest intercomponent interaction for the carbon fibre with a fibre content of 15–20 wt.%.
References
Tomina, А.-М.; Yeriomina, Ye.; Terenin, V. (2019). Designing the organoplastics based on aromatic polyamide, study of their operational properties and applicability. Eastern-European Journal of Enterprise Technologies, 4(12/100), 16–22. https://doi.org/10.15587/1729-4061.2019.176698
Kabat, O.; Sytar, V.; Heti, K.; Artemchuk, V. (2021). A method for obtaining a polymer composite based on aromatic polyamide and silicon dioxide. Journal of Chemical Technology and Metallurgy, 56(2), 283–288.
Sytar, V.I.; Kuzyayev, I.M.; Sukhyy, K.M.; Kabat, O.S.; Belyanovskaya, E.A. (2019). Influence of the nature and concentration of porogens on the structure and properties of phenylone. Voprosy Khimii i Khimicheskoi Tekhnologii, 6, 213–220. doi: 10.32434/0321-4095-2019-127-6-213-220
Shen, Yu.; Cong, Y.H.; Zhang, B.Y.; Lang, Q.Y. (2019). Influence on properties of epoxy nanocomposites with nanoparticles modified by surfactants with different molecular structures: liquid crystal, rigid and flexible segment structures. Materials Research Express, 6(10), 105102. doi:10.1088/2053-1591/ab38c9
Berladir, K.V.; Hovorun, T.P.; Bilous, O.A.; Baranova, S.V. (2018). The modeling of the composition and properties of functional materials based on polytetrafluoroethylene. Functional Materials, 25(2), 342–347. doi:10.15407/fm25.02.342
Budnik, O.; Budnik, A.; Sviderskiy, V.; Berladir, K.; Rudenko, P. (2016). Structural conformation of polytetrafluoroethylene composite matrix. Chemistry and Chemical Technology, 10(2), 241–246. doi:10.23939/chcht10.02.241
Mokari, A.; Guo, S.; Bocklitz, T. (2023). Exploring the steps of infrared (ir) spectral analysis: pre-processing, (classical) data modelling, and deep learning. Molecules, 28(19), 6886; https://doi.org/10.3390/molecules28196886
Lu, H.; Zhang, P.; Ren, S.; Guo, J.; Li, X.; Dong, G. (2018). The preparation of polytrifluorochloroethylene (PCTFE) micro-particles and application on treating bearing steel surfaces to improve the lubrication effect for copper-graphite (Cu/C). Applied Surface Science, 427 (Part A), 1242–1247. https://doi.org/10.1016/j.apsusc.2017.08.206
Zou, J.; Zhang M.; Huang, M.; Zhao, D. (2022). Structure, Properties, and Modification of Polytrifluorochloroethylene: A Review. Frontiers in Materials, 9, 824155. doi:10.3389/fmats.2022.824155
Buria, O.I., Tomina, A.-M.V., Nachovnyi, I.I. (2020). Influence of carbon fiber on tribotechnical characteristics of polyetheretherketone. Problems of Tribology, 25(4/98). 27–32.
Islam, F.; Joannès S.; Bucknell, S.; Leray, Y.; Bunsell, A.; Laiarinandrasana L. (2019). Investigation of tensile strength and dimensional variation of T700 carbon fibres using an improved experimental-setup. Journal of Reinforced Plastics and Composites, 39(3-4), 144–162. doi:10.1177/0731684419873712
Kalinichenko, S.V.; Yeriomina, Y.A.; Burya, A.I.; Dašić, P. (2020). Optimization of Polychlorotrifluoroethylene Processing Technology by the Response Surface Methodology. Lecture Notes in Networks and Systems, 128 LNNS, 322–330.
Burya, O.I.; Kalinichenko, S.V.; Suchilina-Sokolenko, S.P.; Tomina, A.-M.V.; Synelna A.I. (2018). ІR-spectral analysis organicplastics based on polychlorotrifluoroethylene, Bulletin of Lviv University. The series is physical, 55, 40–49. https://doi.org/10.30970/vph.55.2018.40
Kalaleh, H.-A.; Tally, M.; Atassi Y. (2013). Preparation of a clay based superabsorbent polymer composite of copolymer poly(acrylate-co-acrylamid) with bentonite via microwave radiation. Research & Reviews in Polymer, 4(4), 145–150.
Aksimentyeva, О.І.; Chepkov, I.B.; Filipsonov, R.V.; Malynych, S.Z.; Gamernyk, R.V.; Martyniuk, G.V.; Horbenko, Yu.Yu. (2020). Hybrid composites with low reflection of ir radiation. Physics and chemistry of solid state, 21(4), 764−770. doi:10.15330/pcss.21.4.764−770.
Vlasov, P.V.; Smirnov, M.A.; Bobrova, N.V.; Vlasova, E.N.; Elyashevich, G.K. (2012). Synthesis of composite systems based on crosslinked polyacrylic acid and study of their chemical structure by IR spectroscopy. News of higher educational institutions. Light industry technology, 17(3), 11−14.
Wunder, B.; Melzer, S. (2002). Interlayer vacancy characterization of synthetic phlogopitic micas by IR spectroscopy. European Journal of Mineralogy, 14, 1129–1138. doi:10.1127/0935-1221/2002/0014-1129
Watanabe, R.; Sugahara, A.; Hagihara, H.; Sato, H.; Mizukado, J.; Shinzawa, H. (2020). Study of matrix-filler interaction of polypropylene/silica composite by combined infrared (IR) spectroscopic imaging and disrelation mapping. Composites Part A: Applied Science and Manufacturing, 128, 105658. https://doi.org/10.1016/j.compositesa.2019.105658
Takematsu, M.M.; Diniz, M.F.; Mattos, E.C.; Dutra, R.C.L. (2018). Sheath-core bicomponent fiber characterization by FT-IR and other analytical methodologies. Polímeros, 28(4). : doi: 10.1590/0104-1428.09016
Peets, P.; Kaupmees, K.; Vahur, S.; Leito, I. (2019). Refectance FT-IR spectroscopy as a viable option for textile fber identifcation. Heritage Science, 7, 93. https://doi.org/10.1186/s40494-019-0337-z
Asnawi, A.S.F.M.; Azli, A.A.M.; Hamsan, M.H.; Abdul Kadir, M.F.Z.; Yusof, Y.M. (2020). Electrical and infrared spectroscopic analysis of solid polymer electrolyte based on polyethylene oxide and graphene oxide blend. Malaysian Journal of Analytical Sciences, 24(5), 682–697.
Watanabe, R.; Sugahara, A.; Hagihara, H.; Mizukado, J.; Shinzawa, H. (2020). In Situ Fourier Transform Infrared Spectroscopic Imaging for Elucidating Variations in Chemical Structures of Polymer Composites at the Matrix–Filler Interface during Reactive Processing. Macromolecules, 53(24). ttps://pubs.acs.org/doi/10.1021/acs.macromol.0c01878.
Gołofit, T.; Zielenkiewicz, T.; Gawron, J.; Cieślak, K.; Tomaszewski, W.; Chmielarek, M.; Maksimowski, P.; Pawłowski, W. (2019). Examination of chemical composition of wood-plastic composites by differential scanning calorimetry and infrared spectroscopy. Polymery, 64(5). 333–339. dx.doi.org/10.14314/polimery.2019.5.3
Sanches, N.B.; Cassu, S.N.; Dutra, R.C.L. (2015). TG/FT-IR characterization of additives typically employed in EPDM formulations. Polímeros, 25(3), 247-255. https://doi.org/10.1590/0104-1428.1819
Tokarsky´, J.; Maixner, M.; Peikertová, P.; Kulhánková, L.; Burda, J.V. (2014). The IR and Raman spectra of polyaniline adsorbed on the glass surface; comparison of experimental, empirical force field, and quantum chemical results. European Polymer Journal, 57, 47–57. http://dx.doi.org/10.1016/j.eurpolymj.2014.04.023
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Oles Honchar Dnipro National University
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).