SOLUBILITY STUDY OF 3-(1-(4-METHYLPHENYL)-5-PHENYLPYRROL-2-YL)PROPANOIC ACID IN ORGANIC SOLVENTS

Authors

DOI:

https://doi.org/10.15421/jchemtech.v33i1.312615

Keywords:

solubility; enthalpy of dissolution; enthalpy of fusion; enthalpy of mixing; pyrrole derivatives; N-substituted 3-(5-phenylpyrrol-2-yl)propanoic acids

Abstract

In this study solubility temperature dependence of 3-(1-(4-methylphenyl)-5-phenylpyrrol-2-yl)propanoic acid in the temperature range of 271.0–318.2 K using the gravimetric method at atmospheric pressure was experimentally determined for the first time in eight organic solvents, namely methyl acetate, ethyl acetate, acetone, acetonitrile, n-propanol, isopropanol, n-butanol, isobutanol. The primary results of experimental studies of the solubility temperature dependence for each of the studied solution systems were used to calculate the standard molar enthalpy and entropy of dissolution according to the Van't-Hoff equation. The enthalpy and entropy of fusion at the melting point were determined using the results of differential thermal analysis. The equations for the recalculation of the enthalpy and entropy of fusion to a temperature of 298.15 K are presented. Using the calculated values of enthalpy and entropy of fusion to 298.15 K, the thermodynamic parameters of the process of mixing the studied acid with organic solvents were calculated. The nature of intermolecular interactions between the solvent and the dissolved substance was analysed using thermodynamic parameters of mixing. The present study contains fundamental thermodynamic values that are of practical importance for the optimisation of processes of synthesis, processing and purification of the investigated N-substituted derivative of 3-(5-phenylpyrrol-2-yl)propanoic acid.

References

Vitaku, E., Smith, D. T., Njardarson, J. T. (2014). Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals. J. Med. Chem., 57(24), 10257–10274. https://doi.org/10.1021/jm501100b

Battersby A. R. (2000). Tetrapyrroles: the pigments of life. Nat. Prod. Rep., 17(6), 507–526. https://doi.org/10.1039/b002635m

Bharathi, H. G., Raj, A. G., Baladhandapani Aruchamy, Pandurangan Nanjan, Drago, C., & Ramani, P. (2023). Pyrrole: A Decisive Scaffold for the Development of Therapeutic Agents and Structure‐Activity Relationship. Chem Med Chem., 19(1). https://doi.org/10.1002/cmdc.202300447

Sowmya, P. V., Boja Poojary, K. V., Vishwanatha, U., Shetty, P. (2017). Fluorinated pyrrole incorporated 2-thiazolyl hydrazone motifs: a new class of antimicrobial and antituberculosis agents. Arch. Pharmacal Res. https://doi.org/10.1007/s12272-017-0967-1

Brothers, P. J., Senge, M. O. (2022). An introduction to porphyrins for the Twenty‐First Century. Fundamentals of Porphyrin Chemistry. Wiley Online Library. https://doi.org/10.1002/9781119129301.ch1

Masci, D., Hind, C., Islam, M. K., Toscani, A., Clifford, M., Coluccia, A., Conforti, I., Touitou, M., Memdouh, S., Wei, X., La Regina, G., Silvestri, R., Sutton, J. M., Castagnolo, D. (2019). Switching on the Activity of 1,5-Diaryl-Pyrrole Derivatives against Drug-Resistant ESKAPE Bacteria: Structure-Activity Relationships and Mode of Action Studies. European J. Med. Chem., 178(1), 500–514. https://doi.org/10.1016/j.ejmech.2019.05.087

Battilocchio, C., Poce, G., Alfonso, S., Porretta, G. C., Consalvi, S., Sautebin, L., Pace, S., Rossi, A., Ghelardini, C., Di Cesare Mannelli, L., Schenone, S., Giordani, A., Di Francesco, L., Patrignani, P., Biava, M. (2013). A class of pyrrole derivatives endowed with analgesic/anti-inflammatory activity. Bioorg. Med. Chem., 21(13), 3695–3701. https://doi.org/10.1016/j.bmc.2013.04.031

Li Petri, G., Spanò, V., Spatola, R., Holl, R., Raimondi, M.V., Barraja, P., Montalbano, A. (2020). Bioactive Pyrrole-Based Compounds with Target Selectivity. European J. Med. Chem., 208, 112783. https://doi.org/10.1016/j.ejmech.2020.112783

Rita C. C. Carvalho, Martins W. A., Silva T. P., Kaiser C. R., Bastos M. M., Luiz C. S. Pinheiro, Krettli A. U., Núbia Boechat. (2016). New pentasubstituted pyrrole hybrid atorvastatin–quinoline derivatives with antiplasmodial activity. Bioorg. Med. Chem. Lett., 26(8), 1881–1884. https://doi.org/10.1016/j.bmcl.2016.03.027

Zhan, X., Lan, L., Zhang, Y., Chen, J., Zhao, K., Wang, S., Xin, Y., Mao, Z. (2016). Synthesis and Cytotoxicity Evaluation of New 3‐substituted 4‐(4‐methyloxy phenyl)‐1H‐Pyrrole Derivatives. Bull. Korean Chem. Soc., 37(2), 200–206. https://doi.org/10.1002/bkcs.10653

Kerru, N., Gummidi, L., Maddila, S., Gangu, K. K. Jonnalagadda, S. B. (2020). A Review on Recent Advances in Nitrogen-Containing Molecules and Their Biological Applications. Molecules, 25(8), 1909. https://doi.org/10.3390/molecules25081909

Ivan, B.-C., Barbuceanu, S.-F., Hotnog, C. M., Anghel, A. I., Ancuceanu, R.V., Mihaila, M.A., Brasoveanu, L.I., Shova, S., Draghici, C., Olaru, O. T., Nitulescu, G. M., Dinu, M., Dumitrascu, F. (2022). New Pyrrole Derivatives as Promising Biological Agents: Design, Synthesis, Characterization, In Silico, and Cytotoxicity Evaluation. Int. J. Mol. Sci., 23(16), 8854. https://doi.org/10.3390/ijms23168854

Rebbah, B., El Haib, А., Lahmady, S., Forsal, І., Gouygou, М., Mallet-ladeira, S., Medaghri-alaoui, А., Rakib, Е.М., Hannioui, А. (2024). Synthesis, Characterization, and Inhibition Effects of a Novel Eugenol Derivative Bearing Pyrrole Functionalities on the Corrosion of Mild Steel in a HCl Acid Solution. RSC Advances., 14(20), 14152–14160. https://doi.org/10.1039/d4ra01337a

Amin, A., Qadir, T., Sharma, P. K., Jeelani, I., Abe, H. (2022). A Review on The Medicinal And Industrial Applications of N-Containing Heterocycles. Open Med. Chem. J., 16(1). https://doi.org/10.2174/18741045-v16-e2209010

Chandima, B., Ruwan, G., Gamage, P. L., Miller, J. T., Kularatne, R. N., Biewer, M. C., Stefan, M. C. (2020). Pyrrole-Containing Semiconducting Materials: Synthesis and Applications in Organic Photovoltaics and Organic Field-Effect Transistors. ACS Appl. Mater. Interfaces., 12(29), 32209–32232. https://doi.org/10.1021/acsami.0c07161

Filipa, A., A.V. M. (2014). Experimental and high level ab initio enthalpies of formation of di- tri- tetra- and pentamethyl-substituted pyrroles. J. Chem. Thermodyn., 75, 1–7. https://doi.org/10.1016/j.jct.2014.04.003

Du, C. (2022). The solubility of ethyl candesartan in mono solvents and investigation of intermolecular interactions. Liquids, 2(4), 404–412. https://doi.org/10.3390/liquids2040023

Liu, Y., Guo, H. (2021). Solubility determination and crystallization thermodynamics of an intermediate in different organic solvents. J. Mol. Liq., 339, 116821. https://doi.org/10.1016/j.molliq.2021.116821

Sitar, A., Shevchenko, D., Matiichuk, V.V., Skrypska, O., Lesyuk, O., Khomyak, S., Lytvyn, R., Sobechko, I., Horak, Yu. (2024). Synthesis of 3-(1R-5-phenyl-1-N-pyrrol-2-yl)propanoic acids and prediction of their biological activity. Visnyk of the Lviv University. Series Chemistry, 65(1), 223–230. https://doi.org/10.30970/vch.6501.223 (in Ukrainian)

Sobechko, I., Chetverzhuk, Y., Horak, Y., Serheyev, V., Kochubei, V., Velychkivska, N. (2017). Thermodynamic properties of 2-cyano-3-[5-(phenyl)-2-furyl]-2-propenamide and 2-cyano-3-[5-(4-methylphenyl)-2-furyl]-2-propenamide solutions in organic solvents. Chem. Chem. Technol., 11(2), 131–137. https://doi.org/10.23939/chcht11.02.131

Sobechko, I., Dibrivnyi, V., Horak, Y., Velychkivska, N., Kochubei, V., Obushak, M. (2017). Thermodynamic properties of solubility of 2-methyl-5-arylfuran-3-carboxylic acids in organic solvents. Chem. Chem. Technol., 11(4), 397–404. https://doi.org/10.23939/chcht11.04.397

Sobechko, I., Horak, Y., Dibrivnyi, V., Obushak, M., Goshko, L. (2019). Thermodynamic Properties of 2-Methyl-5-arylfuran-3 Carboxylic Acids Chlorine Derivatives in Organic Solvents. Chem. Chem. Technol., 13(3), 280–287. https://doi.org/10.23939/chcht13.03.280

Klachko, O., Matiychuk, V., Sobechko, I., Serheyev, V., Tishchenko, N. (2020). Thermodynamic Properties of 6-Methyl-2-oxo-4-aryl-1,2,3,4-tetrahydropyrimidine-5-carboxylic acid Esters. Chem. Chem. Technol., 14(3), 277–283. https://doi.org/10.23939/chcht14.03.277

Acree, W., Chickos, J. S. (2016). Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds. Sublimation, Vaporization and Fusion Enthalpies From 1880 to 2015. Part 1. C1− C10. J. Phys. Chem. Ref. Data, 45(3), 033101. https://doi.org/10.1063/1.4948363

Gutmann Acceptor and Donor number https://www.stenutz.eu/chem/solv21.php

Downloads

Published

2025-04-15

Issue

Section

Physical and inorganic chemistry