INVESTІGATІON OF CONDІTІONS FOR OBTAІNІNG AG3SBS4 NANOPARTІCLES ІN VARІOUS ORGANІC SOLVENTS

Authors

DOI:

https://doi.org/10.15421/jchemtech.v33i2.313814

Keywords:

Keywords nanocrystals, ethylene glycol polyethylene glycol, dimethylformamide triethanolamine, n-heptane.

Abstract

Ag3SbS4-nanocrystals were synthesized by solvothermal method in various member solvents (ethylene glycol+polyethylene glycol) and (dimethylformamide+triethenolamine). Optimum conditions for obtaining nanoparticles were determined (molar ratios of the amount of components, volume ratio of the solvent, temperature, time, etc.). The crystal structure, morphology, nano-size and chemical composition of the obtained silver thiostibiate nanostructure were studied using thermogravimetric (TG), X-ray powder diffractometer (XRD), energy dispersion spectroscopy (eds) and transmission electron microscopy (TEM). Using EDX and chemical analysis, the composition was found to correspond to the formula Ag3SbS4. The results of the TEM analysis showed that the synthesized Ag3SbS4 nanowires have diameters ranging from 150 to 200 nm, while their lengths can reach several micrometers. The dispersion solution of Ag3SbS4 nanoparticles was prepared in n-heptane, and the forbidden band width was determined from the absorption spectrum of the solution.

References

Biagioni, C., Zaccarini, F., Roth, P., Bindi, L. (2020). Progress in the knowledge of ‘ruby silvers’: New structural and chemical data of pyrostilpnite, Ag3SbS3. Mineralogical Magazine, 84, 463–467 https://doi.org/10.1180/mgm.2020.37

Keighin, C.W., Honea, R.M. (1969). The system Ag-Sb-S from 600°C to 200°C. Mineral. Deposita, 4, 153–171. https://doi.org/10.1007/BF00208050

Zhang, L., Zhu, C., Chen, T. (2021). Solution processed AgSbS2 film for efficient planar heterojunction solar cells. Applied Physics Letters, 119(15), 15 https://doi.org/10.1063/5.0064802

Gusain, M., Rawat, P., Nagarajan, R. (2014). Soft chemical synthesis of Ag3SbS3 with efficient and recyclable visible light photocatalytic properties. Materials Research Bulletin, 60, 872–875. https://doi.org/10.1016/j.materresbull.2014.09.084

Satra, J., Ghorui, U. K., Mondal, Р., Bhadu, G. R. (2020). One pot solvent assisted syntheses of Ag3SbS3 nanocrystals and exploring their phase dependent electrochemical behavior toward oxygen reduction reaction and visible light induced methanol oxidation reaction. Dalton Trans., 49, 9464–9479 http:/doi.org/10.1016/j.mssp.2021.106167

Zhong, J., Hu, J., Cai, W., Yang, F. (2010). Biomolecule-assisted synthesis of Ag3SbS3 nanorods. Journal of Alloys and Compounds, 501(1), 15–19. https://doi.org/10.1016/j.jallcom.2010.04.070

Gomez, D. T., Henry, J., Mohanraj, K., Sivakumar, G. (2016). AgSbS2 and Ag3SbS3 absorber materials for photovoltaic applications. Materials Chemistry and Physics, 181, 415–421. DOI:10.1016/j.matchemphys.2016.06.077

Tubtimtae, A., Huang, Ch.-L., Shi, J.-B., Lee, M.-W (2016). Ag3SbS3 thin films formed by annealing hydrothermally synthesized Ag3SbS3 nanoparticles. Materials Letters, 177, 58–60. doi: 10.1016/j.matlet.2016.04.165

Ho, Y.-R., Lee, M.-W. (2013). AgSbS2 semiconductor-sensitized solar cells. Electrochemistry Communications, 26, 48–51. https://doi.org/10.1016/j.elecom.2012.10.003

Boon-on, P., Chen, P.-H., Lee, M-W. (2022). AgSbSe2 nanoparticles: A solarabsorber material with an optimal Shockley-Queisser band gap. Materials Letters, 309, 131412. https://doi.org/10.1016/j.matlet.2021.131412

Chalapathi, U. Reddy, A. S., Prasad, P. R. (2023). Two-stage-processed AgSbS2 films for thin-film solar cells/ Materials Science in Semiconductor Processing, 168, 107821 https://doi.org/10.1016/j.mssp.2023.107821

Hosni, N., Bouaniza, N., Selmi, W., Assili, K. Maghraoui-Meherzi, H. (2019). Synthesis and physico-chemical investigations of AgSbS2 thin films using Doehlert design and under DFT framework. Journal of Alloys and Compounds, 778, 913–923.

Medina-Montes, M.I., Baldenegro-Pérez, L.A., Morales-Luna, M., Sánchez, T.G., Santos-Cruz, D., Mayén-Hernández, S.A. (2022). Physical properties of photoconductive Ag-Sb-S thin films prepared by thermal evaporation. Materials Science in Semiconductor Processing, 137, 106167 https://doi.org/10.1016/j.mssp.2021.106167

Chalapathi, Ch., Hemalatha, A. S., Dhanalakshmi, R., Reddy, G.S., Divya, V. Gonuguntla, S. Sangaraju, A., Ayman, İ., Ghfar, P., Rosaiah, S., Youngsuk, S.Y. (2024). Park Impact of stacking sequence and sulfurization duration on the growth of pyrargyrite Ag3SbS3 absorber layers. Journal of Solid State Chemistry, 338, 124832

Oubakalla, M. Mouhcine, B., Khalid, F., Nejmi, Y. (2023). The Ag3SbS3 thin film combining super-capacitive and absorptive behaviors: elaboration, characterization and DFT study. Applied Physics A, 130(1) doi:10.1007/s00339-023-07183-y

Zhiping, J., Xue, C. L. Y., Huanq, D., Persson, C. (2023). First-principles prediction on Ag3SbS4 as a photovoltaic absorber. Journal of Physics and Chemistry of Solids, 183, 111655. https://doi.org/10.1016/j.jpcs.2023.111655

Aspiala, M., Tesfaye, F., Taskine, P. (2016). Thermodynamic study in the Ag–Sb–S system by the EMF method. The Journal of Chemical Thermodynamics 98, 361–366. https://doi.org/10.1016/j.jct.2016.03.009

Dimitrov, R. Boyanov, B. (2004). Oxidation of Metal Sulphides and Determination of Characteristic Temperatures by DTA and TG. Journal of Thermal Analysis and Calorimetry, 61(1), 181–189 https://doi.org/10.1023/A:1010181112713

Abbasov, A.D., Mamedova, G. A. (2025). Synthesis of Clinoptilolite Zeolite and Investigation the Influence of Various Factors on the Crystallization Process in Natural System Obsidian-Halloysite. Theoretical Foundations of Chemical Engineering, 58, 1206–1217 https://doi.org/10.1134/S0040579524600347

Aliyeva, S. H., Rzayeva, A. B. (2024). Synthesis of copper thiostibiate nano compound by solvothermal method. Journal of Chemistry and Technologies, 33(2), 304–311. https://doi.org/10.15421/jchemtech.v32i2.299093

Downloads

Published

2025-07-15

Issue

Section

Physical and inorganic chemistry