USE OF LIGNOCELLULOSE RAW MATERIALS IN THE PRODUCTION OF BIOETHANOL

Authors

DOI:

https://doi.org/10.15421/jchemtech.v33i1.313927

Keywords:

wheat straw stalks, bioethanol, steam explosion, organosolvent delignification, enzymatic hydrolysis, fermentation

Abstract

Wheat straw and corn stalks are considered potential raw materials for bioethanol production as an alternative fuel due to their high cellulose and hemicellulose content, as well as their wide distribution and availability. The aim of the work is to study the pretreatment of wheat straw and post-harvest corn waste by steam explosion and organosolvent delignification methods to obtain the maximum ethanol yield. A combination of steam explosion as a method of pretreatment of straw for the destruction of lignin bonds and organosolvent delignification for the separation of cellulose is proposed. The obtained explosive defibration products and the solid phase after organosolvent delignification were subjected to enzymatic hydrolysis with cellulase and fermented with Saccharomyces cerevisiae yeast. For delignification, 50 % ethyl alcohol was used with the addition of sulfuric acid as a catalyst in an amount of 3 %. A study of the quantitative yield of delignification products at each stage of raw material processing was conducted. Analysis of the physicochemical parameters of the obtained explosive defibration products showed an increase in the cellulose content from 42 to 63 %, but the residual lignin content was 12 %. Organosolvent delignification led to almost complete destruction of lignin bonds with the release of cellulose in a form available for enzymatic hydrolysis. Enzymatic hydrolysis of cellulose with a complex of cellulolytic enzymes before fermentation increases the ethanol content in the fermented mashes by 4 times. Improvements in the pretreatment of lignocellulosic raw materials, especially through combinations of different processes, and advances in biotechnology aimed at creating effective enzyme preparations and yeast strains with high enzymatic activity and resistance to inhibitors, will lead to an increase in the economic efficiency of second-generation bioethanol production by 50 %.

References

Tran, T., Le, P., Mai, P.T., Nguyen, Q.D. (2019). Bioethanol Production from Lignocellulosic Biomass. In: Edited by Yongseung Yun. Alcohol Fuels: Current Technologies and Future Prospect, 4–11. http://dx.doi.org/10.5772/ intechopen. 86437

(2023). RFA analysis of public and private data sources of Annual World Fuel Ethanol Production. USA: Renewable Fuels Association. https://ethanolrfa.org/markets-and-statistics/annual-ethanol-production.

Shukla, А., Kumar, D., Girdhar, M., Kumar, A., Goyal, A., Malik, T., Mohan, A. (2023). Strategies of pretreatment of feedstocks for optimized bioethanol production: distinct and integrated approaches. Biotechnol Biofuels, 16, 44. https://doi.org/10.1186/s13068-023-02295-2

Konstantinavičienė, J., Vitunskienė, V. (2023). Definition and classification of potential of forest wood biomass in terms of sustainable development: A review. Sustainability, 15(12), 11–93. https://doi.org.10.3390/SU15129311

Owonubi, S.J., Agwuncha, S.C., Malima, N.M., Shombe, G.B., Makhatha, E.M., Revaprasadu, N. (2021). Non-woody biomass as sources of nanocellulose particles: A review of extraction procedures. Frontiers in Energy Research., 9, 608-25. https://doi.org/10.3389/FENRG.2021.608825/BIBTEX

Bajpai, P. (2018). Biotechnology for Pulp and Paper Processing. DORDRECHT, Netherlands: Springer Science+Business Media. https://doi.org/10.1007/978-981-10-7853-8

Abolore, R.S., Jaiswal, S., Amit, K., Jaiswal, A.K. (2024). Green and sustainable pretreatment methods for cellulose extraction from lignocellulosic biomass and its applications: A review. Carbohydrate Polymer Technologies and Applications, 7(1), 28. https://doi.org/10.1016/j.carpta.2023.100396

Danilova, K. (2024). Comparative assessment of the delignification methods of lignocellulose biomass for the second generation bioethanol production (overview). Food Resources, 12(22), 61-73 (in Ukrainian) https://doi.org/10.31073/foodresources2024-22-07.

Shen, F., Zhong, B., Wang, Y., Xia, X., Zhai, Z., Zhang, Q. (2019). Cellulolytic microflora pretreatment increases the efficiency of anaerobic co-digestion of rice straw and pig manure. BioEnergy Research., 12, 703-13.

https://doi.org/10.1007/s12155-019-10013-w

Kumar, R., Prakash, O. (2023). Experimental investigation on effect of season on the production of bioethanol from wheat-stalk (WS) using simultaneous saccharification and fermentation (SSF) method. Fuel., 351, 128958.

https://doi.org/10.1016/j.fuel.2023.128958

Sulzenbacher, D., Atzmuller, D., Hawe, F., Richter, M.,

Cristobal-Sarramian, A., Zwirzitz, A. (2023). Optimization of steam explosion parameters for improved biotechnological use of wheat straw. Biomass Conversion and Biorefinery, 13 (2), 1035-1046. https://doi.org/10.1007/s13399-020-01266-z.

Ibarra, D., Eugenio, M.E., Alvira, P., Ballesteros, I., Ballesteros, M., Negro, M.J. (2023). Effect of Laccase Detoxification on Bioethanol Production from Liquid Fraction of Steam-Pretreated Olive Tree Pruning. Fermentation., 9(3), 214.

https://doi.org/10.3390/fermentation9030214

Selvaraj, A., Sriramulu, G. (2020). Physicochemical Characterization of Native and Steam Explosion Pretreated Wild Sugarcane (Saccharum spontaneum). International Journal of Renewable Energy Development, 9 (3), 353-359. https://doi.org/ 10.14710/ ijred.2020.30240.

Rocha, G.J.M,, Gonçalves, AR,, Nakanishi, S.C.,

Nascimento, V.M., Silva, V.F.N. (2015). Pilot scale steam explosion and diluted sulfuric acid pretreatments: Comparative study aiming the sugarcane bagasse saccharification. Industrial Crops and Products, 74, 810-816.

https://doi.org/10.1016/j.indcrop.2015.05.074

Zhao, G.Z., Kuang, G.L., Wanga, Y., Yaoa, Y., Zhangb, J., Pan, Z.H. (2020). Effect of steam explosion on physicochemical properties and fermentation characteristics of sorghum (Sorghum bicolor (L.) Moench). LWT - Food Sci Techn., 129(4), e109579. https://doi.org/10.1016/j.lwt.2020.109579

Bonfiglio, F., Cagno, M., Rey, F., Torres, M., Bothig, S., Menendez, P., Mussatto, S.I. (2019). Pretreatment of switchgrass by steam explosion in a semi-continuous pre-pilot reactor. Biomass Bioenerg., 121, 41-47. https://doi.org/10.1016/j.biombioe.2018.12.013

Hoang, A.T., Nguyen, X.P., Duong, X.Q., Ağbulut, U., Len, C,, Nguyen, P.Q.P. et al. (2023). Steam explosion as sustainable biomass pretreatment technique for biofuel production: Characteristics and challenges. Bioresource Technol., 385, e129398.

https://doi.org/10.1016/j.biortech.2023.129398

Milford, H., Gerald, B., Vesselin, M. (2001). Production of microcrystalline cellulose by reactive extrusion: Patent USA US 6228213B1.

Koo, B.W., Kim, H.Y., Park, N., Lee, S.M., Yeo, H., Choi, I.G. (2011). Organosolv pretreatment of Liriodendron tulipifera and simultaneous saccharification and fermentation for bioethanol production. Biomass Bioenerg., 35, 1833–40. https://doi.org/10.1016/j. biomb ioe.2011.01.014.

Joy, S.P., Kumar, A.A., Gorthy, S., Jaganathan, J., Kunappareddy, A., Gaddameedi, A. et al. (2021). Variations in structure and saccharification efficiency of biomass of different sorghum varieties subjected to aqueous ammonia and glycerol pretreatments. Ind Crops Prod., 159, e113072

https://doi.org/10.1016/j.indcrop.2020.113072.

Carvalheiro, F., Duarte, L.C., Van-Dúnem, V., Pires, F. (2022). Effective Mild Ethanol-Based Organosolv Pre-Treatment for the Selective Valorization of Polysaccharides and Lignin from Agricultural and Forestry Residues. Energies., 15(15), 5654. https://doi.org/10.3390/en15155654

Hamelinck, C.N., Hooijdonk, G., Faaij, A. (2005). Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass and Bioenergy., 28(4), 384-410.

https://doi.org/10.1016/j.biombioe.2004.09.002

Sadhukhan, J., Martinez-Hernandez, E., Amezcua-Allieri, M.A., Aburto, J., Honorato, J.A. (2019). Economic and environmental impact evaluation of various biomass feedstock for bioethanol production and correlations to lignocellulosic composition. Bioresource Technology Reports., 7, 100230.

https://doi.org/10.1016/j.biteb.2019.100230

Carvalheiro, F., Silva-Fernandes, T., Duarte, L.C., Girio, F.M. (2009). Wheat straw autohydrolysis: Process optimization and products characterization. Appl. Biochem. Biotechnol., 153, 84–93. https://doi.org/10.1007/s12010-008-8448-0

Wildschut, J., Smit, A.T., Reith, J.H., Huijgen, W.J. (2013). Ethanol-based organosolv fractionation of wheat straw for the production of lignin and enzymatically digestible cellulose. Bioresour. Technol., 135, 58–66. https://doi.org/10.1016/j.biortech.2012.10.050

Linskens, H.F., Tracey, M.V., Beiss, U., Bendall, F. (2013). Modern Methods of Plant Analysis. Springer-Verlag.

(2009) Official Method GS 1-5. Raw Sugar Methods - The Determination of Reducing Sugars in Cane Raw Sugar by the Luff-Schoorl Procedure. ICUMSA.

Marcos, A.S., Brasil, L.H., Gomes, M.Y., Kamogawa, L.C.B. (2020). Ethanol determination in fermented sugarcane substrates by a diffusive micro-distillation device. J Microbiol Biotechn., 178, e106085. https://doi.org/10.1016/j.mimet.2020.106085

Albalasmeh, A.A., Berhe, A.A., Ghezzehei, T.A. (2013). A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydrate Polymers, 97(2), 253–261 https://dx.doi.org/10.1016/j.carbpol.2013.04.072

Sun, Y.G., Ma, Y.L., Wang, L.Q., Wang, F.Z., Wu. Q.Q. (2015). Physicochemical properties of corn stalk after treatment using steam explosion coupled with acid or alkali. Carbohydrate Polymers, 117(2), 486-93. https://doi.org/10.1016/j.carbpol. 2014.09.066

Wang, F., Yin, S., Xie, H., Ren, T. (2012). Effects of pretreatments on steam exposition efficiency of corn stalk. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 28(12), 273-280. https://doi.org/10.3969/j.issn.1002-6819.2012.12.044

Sulzenbacher, D., Atzmuller, D., Hawe, F., Richter, M., Cristobal-Sarramian, A., Zwirzitz, A. (2013). Optimization of steam explosion parameters for improved biotechnological use of wheat straw. Biomass Conversion and Biorefinery. 13(2), 1035-46. https://doi.org/10.1007/s13399-020-01266-z

Smit, A.T., Huijgen, W.J.J., Grisel, R.J.H. (2014). Process for the Treatment of Lignocellulosic Biomass. Patent WO 2014/126471.

Tardy, B.L., Mattos, B.D., Otoni, C.G., Beaumont, M., Majoinen, J., Kämäräinen, T., Orlando, J., Rojas, O.J. (2021). Deconstruction and Reassembly of Renewable Polymers and Biocolloids into Next Generation Structured Materials. Chemical Reviews, 121(22), 14088–14188. https://doi.org/10.1021/acs.chemrev.0c01333

Delmas, M., Benjelloun, M.B. (2008). Process for pretreating a lignocellulosic material with a view to producing bioethanol, and bioethanol production process. WO2009092749A1.

Cagnin, L., Gronchi, N., Basaglia, M., Favaro, L., Casella, S. (2021). Selection of Superior Yeast Strains for the Fermentation of Lignocellulosic Steam-Exploded Residues. ,Front Microbiology, 12, 756032. https://doi.org/10.3389/fmicb.2021.756032

Rumpf, J., Do, X.T., Burger, R., Monakhova, Y.B., Schulze, M. (2020). Extraction of high-purity lignins via catalyst-free organosolv pulping from low-input crops. Biomacromolecules, 21(5), 1929-1942. https://doi.org/10.1021/acs.biomac.0c00123

Mlayah, B.B., Delmas, M. (2014). Process for the production, in particular of ethanol, by sequent enzymatic hydrolysis of cellulose and hemicelluloses of lignocellulosic raw material. Patent FR3021975B1.

Tran, P.H.N., Ko, J.K., Gong, G., Um, Y., Lee, S.M. (2020). Improved simultaneous co-fermentation of glucose and xylose by Saccharomyces cerevisiae for efficient lignocellulosic biorefinery. Biotechnol. Biofuels, 13 (12), 1–14. https://doi.org/10.1186/s13068-019-1641-2

Tsegaye, K.N., Alemnew, M., Berhane, N. (2024). Saccharomyces cerevisiae for lignocellulosic ethanol production: a look at key attributes and genome shuffling. Front Bioeng Biotechnol., 12, 1466644. https://doi.org/10.3389/fbioe.2024.1466644

Downloads

Published

2025-04-15