METAL COMPLEXES OF PHENOLIC COMPOUNDS FROM PURPLE CONEFLOWER

Authors

DOI:

https://doi.org/10.15421/jchemtech.v33i1.315146

Keywords:

hydroxycinnamic acids, herbal preparation, lead and cadmium ions, metal complexes, absorption and reflectance spectra, colorimetry

Abstract

The results of the study of the ability of purple coneflower Echinacea purpurea (L.) Moench preparations to bind to Pb(II) and Cd(II) are presented. Complex formation involving the catechol site of phenolic compounds in extracts and herbal preparation was confirmed using the spectrophotometric method. The presence of a pronounced long-wavelength maximum in the difference absorption spectra confirmed the formation of a more conjugated chromophore system due to the coordination of metal ions. Complexes of phenolic compounds with Pb(II), Cd(II) and Pb(II)+Cd(II) were obtained using extracts of rhizomes with roots and aerial parts. The methods of reflectance spectroscopy in the visible range and colorimetry  were used to characterize the preparations. The complex structure of the band with the presence of a longer-wavelength maximum in the solid phase compared to solutions is associated with the formation of a more conjugated chromophore system. This fact can be explained by the property of chicory acid (predominant component) to self-assemble into various supramolecular structures with the possibility of stacking interaction of catechol fragments. The established chelating ability expands the idea of the biological activity of echinacea preparations, which can provide metal-ligand homeostasis during chelation therapy in case of intoxication of the body with various metals. The results obtained can be used to obtain promising materials from renewable plant raw materials.

References

Burlou-Nagy, C., Bănică, F., Jurca, T., Vicaș, L. G., Marian, E., Muresan, M. E., Bácskay, I., Kiss, R., Fehér, P., Pallag, A. (2022). Echinacea purpurea (L.) Moench: Biological and pharmacological properties. A review. Plants, 11(9), 1244. https://doi.org/10.3390/plants11091244

Ahmadi, F., Kariman, K., Mousavi, M., Rengel, Z. (2024). Echinacea: Bioactive сompounds and agronomy. Plants, 13(9), 1235. https://doi.org/10.3390/plants13091235

Ahmadi, F. (2024). Phytochemistry, mechanisms, and preclinical studies of Echinacea extracts in modulating immune responses to bacterial and viral infections: A comprehensive review. Antibiotics, 13(10), 947. https://doi.org/10.3390/antibiotics13100947

Świderski, G., Jabłońska-Trypuć, A., Kalinowska, M., Świsłocka, R., Karpowicz, D., Magnuszewska, M., Lewandowski, W. (2020). Spectroscopic, theoretical and antioxidant study of 3d-transition metals (Co (II), Ni (II), Cu (II), Zn (II)) complexes with cichoric acid. Materials, 13(14), 3102. https://doi.org/10.3390/ma13143102

Jabłońska-Trypuć, A., Wydro, U., Wołejko, E., Świderski, G., Lewandowski, W. (2020). Biological activity of new cichoric acid–metal complexes in bacterial strains, yeast-like fungi, and human cell cultures in vitro. Nutrients, 12(1), 154. https://doi.org/10.3390/nu12010154

Sun, Y.K., Jia, M., Yang, J., Huang, Y.P., Liu, Z. S., Aisa, H.A. (2018). A strategy of utilizing Zn (II) as metallic pivot in room temperature ionic liquid to prepare molecularly imprinted polymers for compound with intramolecular hydrogen bonds. Anal. Bioanal. Chem., 410, 349–359. https://doi.org/10.1007/s00216-017-0765-0

Zaporozhets, O. A., Krushinsksya, E. A., Barvinchenko, V. N., Lipkovskaya, N. A., Pogorelyi, V. K. (2003). Spectrophotometric determination of hydroxycynnamic acid and related compounds in Echinacea preparations. Pharm. Chem. J., 37(12), 632–636. https://doi.org/0.1023/B:PHAC.0000022080.45066.d5

Tsai, Y. L., Chiou, S. Y., Chan, K. C., Sung, J. M., Lin, S. D. (2012). Caffeic acid derivatives, total phenols, antioxidant and antimutagenic activities of Echinacea purpurea flower extracts. LWT - Food Sci. Technol., 46(1), 169–176. https://doi.org/10.1016/j.lwt.2011.09.026

Lee, T. T., Chen, C. L., Shieh, Z. H., Lin, J. C., Yu, B. (2009). Study on antioxidant activity of Echinacea purpurea L. extracts and its impact on cell viability. Afr. J. Biotechnol., 8(19), 5097–5105. https://doi.org/10.4314/ajb.v8i19.65230

Ciganović, P., Jakupović, L., Momchev, P., Nižić Nodilo, L., Hafner, A., Zovko Končić, M. (2023). Extraction optimization, antioxidant, cosmeceutical and wound healing potential of Echinacea purpurea glycerolic extracts. Molecules, 28(3), 1177. https://doi.org/10.3390/molecules28031177

Hu, C., Kitts, D. D. (2000). Studies on the antioxidant activity of Echinacea root extract. J. Agric. Food Chem., 48(5), 1466–1472. https://doi.org/10.1021/jf990677

Gulcin, İ., Alwasel, S. H. (2022). Metal ions, metal chelators and metal chelating assay as antioxidant method. Processes, 10(1), 132. https://doi.org/10.3390/pr10010132

Gecer, E. N., Erenler, R., Temiz, C., Genc, N., Yildiz, I. (2022). Green synthesis of silver nanoparticles from Echinacea purpurea (L.) Moench with antioxidant profile. Part. Sci. Technol., 40(1), 50–57. https://doi.org/10.1080/02726351.2021.1904309

Al-Hakkani, M.F., Gouda, G.A., Hassan, S. H., Nagiub, A. M. (2021). Echinacea purpurea mediated hematite nanoparticles (α-HNPs) biofabrication, characterization, physicochemical properties, and its in-vitro biocompatibility evaluation. Surf. Interfaces, 24, 101113. https://doi.org/10.1016/j.surfin.2021.101113

Marslin, G., Siram, K., Maqbool, Q., Selvakesavan, R. K., Kruszka, D., Kachlicki, P., Franklin, G. (2018). Secondary metabolites in the green synthesis of metallic nanoparticles. Materials, 11(6), 940. https://doi.org/10.3390/ma11060940

Abdelmonem, I. M., Emara, A. M., Elsharma, E. M. (2024). Utilizing low-cost purple coneflower (Echniacea purpurea) marc for competitive sorption of 152+154Eu(III), 60Co(II) and 134Cs(I) radionuclides. J. Environ. Radioact., 275, 107426. https://doi.org/10.1016/j.jenvrad.2024.107426

Zitkevicius, V., Smalinskiene, A., Lesauskaite, V., Savickiene, N., Savickas, A., Ryselis, S., Kregzdyte, R., Abdrakhmanov, O., Sadauskiene, I., Ivanov, L. (2007). Influence of Echinacea purpurea (L.) Moench extract on the toxicity of cadmium. Ann. N. Y. Acad. Sci., 1095(1), 585–592. https://doi.org/10.1196/annals.1397.063

El-Demerdash, F. M., Karhib, M. M., Ghanem, N. F., Abdel-Daim, M. M., El-Sayed, R. A. (2024). Echinacea purpurea root extract mitigates hepatotoxicity, genotoxicity, and ultrastructural changes induced by hexavalent chromium via oxidative stress suppression. Environ. Sci. Pollut. Res., 31(18), 26760-26772. https://doi.org/10.1007/s11356-024-32763-7

Abdelmonem, H. A., Mahmoud, A. H., Abbas, M. (2023). Beneficial role of Echinacea against lead acetate-induced brain toxicity through reducing inflammation, oxidative stress and apoptosis in rats. Arab J. Nucl. Sci. Appl., 56(1), 55–68. 10.21608/ajnsa.2022.147224.1610

Peng, S., Jin, Y., Chen, Y., Wu, C., Wang, Y., Wang, X., Jin, Q., Xu, Y. (2022). Growth response, enrichment effect, and physiological response of different garden plants under combined stress of polycyclic aromatic hydrocarbons and heavy metals. Coatings, 12(8), 1054. https://doi.org/10.3390/coatings12081054

Sharma, J. K., Kumar, N., Singh, N. P., Santal, A. R. (2023). Phytoremediation technologies and their mechanism for removal of heavy metal from contaminated soil: An approach for a sustainable environment. Front. Plant Sci., 14, 1076876. https://doi.org/10.3389/fpls.2023.1076876

Fedenko, V. S., Shemet, S. A., Guidi, L., Landi, M. (2020). Metal/metalloid-induced accumulation of phenolic accumulation in plants. In M. Landi, S. A. Shemet, V. S. Fedenko (Eds.), Metal toxicity in higher plants (pp. 67–115). N.Y., USA: Nova Science Publishers.

Fedenko, V. S., Landi, M., Shemet, S. A. (2020). Interrelations between metal(metalloid)-induced accumulation of phenolics and other plant chelators. In T. O. Yastreb, Y. E. Kolupaev, A. I. Yemets, Y. B. Blume (Eds.), Regulation of adaptive responses in plants (pp. 285–310). N.Y., USA: Nova Science Publishers.

World Health Organization. (1999). Herba Echinaceae Purpurea. In WHO monographs on selected medicinal plants (Vol. 1). Geneva, Switzerland: World Health Organization.

Fedenko, V. S. (2006). [Cyanidin complexation with metal ions]. Ukrains'kyi Biokhimichnyi Zhurnal – Ukrainian Biochemical Journal, 78(2), 149-152 (in Ukrainian).

Fedenko, V. S. (2022). Chemisorption of flavonoids from canadian goldenrod on aluminum oxide. J. Chem. Technol., 30(3), 340-348 (in Ukrainian). https://doi.org/10.15421/jchemtech.v30i3.262972

Fedenko, V. S. (2024). [Reflectance and colorimetric characteristics of metallocomplexes of flavonoids from canadian goldenrod]. J. Chem. Technol., 32(1), 65–74 (in Ukrainian). https://doi.org/10.15421/jchemtech.v32i1.262957

Petrova, A., Ognyanov, M., Petkova, N., Denev, P. (2023). Phytochemical characterization of purple coneflower roots (Echinacea purpurea (L.) Moench.) and their extracts. Molecules, 28(9), 3956. https://doi.org/10.3390/molecules28093956

Sereda, O. V., Kovalchuk, T. V., Tzurkan O.O. (2001). [Methods of the analysis of hydroxicinnamic acids derivatives in rootstocks with the roots of Echinacea purpurea]. Farmatsevtychnyi Zhurnal – Pharmaceutical Journal, 6, 75–81 (in Ukrainian).

Fedenko, V. S. (2007). [Dose effect of cyanidin interaction with lead ions in roots of maize seedlings]. Ukrains'kyi Biokhimichnyi Zhurnal – 1 79(2), 24–29 (in Ukrainian).

Fedenko, V. S., Landi, M., Shemet, S. A. (2017). Detection of nickel in maize roots: A novel nondestructive approach by reflectance spectroscopy and colorimetric models. Ecol. Indic., 82, 463–469. https://doi.org/10.1016/j.ecolind.2017.07.021

Świderski, G., Gołębiewska, E., Kalinowska, M., Świsłocka, R., Kowalczyk, N., Jabłońska-Trypuć, A., Lewandowski, W. (2024). Comparison of physicochemical, antioxidant, and cytotoxic properties of caffeic acid conjugates. Materials, 17(11), 2575. https://doi.org/10.3390/ma17112575

Smoak, E. M., Fath, K. R., Barnaby, S. N., Grant, V. C., Banerjee, I. A. (2011). pH tunable self-assembly of chicoric acid and their biocompatibility studies. Supramol. Chem., 23(10), 678–688. https://doi.org/10.1080/10610278.2011.601309

Barnaby, S. N., Sarker, N. H., Tsiola, A., Banerjee, I. A. (2012). Biomimetic formation of chicoric-acid-directed luminescent silver nanodendrites. Nanotechnology, 23(29), 294011. https://doi.org/10.1088/0957-4484/23/29/294011

Fedenko, V. S. (2024). [Spectral characteristics of protocyanin supramolecular pigment as pharmacognostic criteria of Centaurea cyanus L. Flowers]. J. Chem. Technol., 32(2), 256–266 (in Ukrainian). https://doi.org/10.15421/jchemtech.v32i2.298075

Ohta, N., Robertson, A. (2006). Colorimetry: fundamentals and applications. John Wiley & Sons. https://doi.org/10.1002/0470094745

Khokhlov, A. V., Khokhlova, L. I., Kovtun, M. F. (2024). Chemical and physicochemical features of modified biocarbon ecosorbent for binding heavy metal ions. J. Chem. Technol., 32(2), 363–370. https://doi.org/10.15421/jchemtech.v32i2.29846

Godlewska-Żyłkiewicz, B., Świsłocka, R., Kalinowska, M., Golonko, A., Świderski, G., Arciszewska, Ż., Nalewajko-Sieliwoniuk, E., Naumowicz, M., Lewandowski, W. (2020). Biologically active compounds of plants: Structure-related antioxidant, microbiological and cytotoxic activity of selected carboxylic acids. Materials, 13(19), 4454. https://doi.org/10.3390/ma13194454

Fu, R., Zhang, P., Deng, Z., Jin, G., Zhang, Y. (2021). Chicoric acid provides better ultraviolet protection than the sum of its substrates in purple coneflower plants. Ind. Crop. Prod., 170, 113778. https://doi.org/10.1016/j.indcrop.2021.113778

Yang, M., Wu, C., Zhang, T., Shi, L., Li, J., Liang, H., Lv, X., Jing, F., Qin, L., Zhao, T., Wang, C., Liu, G., Feng, S., Li, F. (2022). Chicoric acid: Natural occurrence, chemical synthesis, biosynthesis, and their bioactive effects. Front. Chem., 10, 888673. https://doi.org/10.3389/fchem.2022.888673

Fedenko, V. S., Landi, M., Shemet, S. A. (2022). Metallophenolomics: a novel integrated approach to study complexation of plant phenolics with metal/metalloid ions. Int. J. Mol. Sci., 23, 11370. https://doi.org/10.3390/ijms231911370

Published

2025-04-15