ALKYLTHIOBENZOTHIAZOLES DECORATED WITH 1,2,3-TRIAZOLE

Authors

DOI:

https://doi.org/10.15421/jchemtech.v32i4.316457

Keywords:

2-(but-1-yn-4-ylthio)benzothiazole, 2-(pent-1-yn-5-ylthio)benzothiazole, cycloaddition, click-reaction, 1,2,3-triazole, ; hybrid heterocycle

Abstract

Triazole and its hybrid derivatives exhibit a range of biological activities, that is why the synthesis of hybrid heterocycles that contain triazole and benzothiazole rings is relevant. The aim of the current study is the investigation of the use of terminal butynyl and pentynyl thioethers of benzothiazole in the copper catalytic reaction of 1,3-dipolar cycloaddition of azides. 2-(but-1-yn-4-ylthio)- and 2-(pent-1-yn-5-ylthio)-benzothiazoles were synthesized for the first time in high yields via alkylation of 2-mercaptobenzothiazole with terminal butynyl and pentynyl bromides. Long-chain alkynyl thioethers of benzothiazole were used in copper catalytic reactions of 1,3-dipolar cycloaddition with aromatic and aliphatic azides. Based on experimental data, it was established that when using butynyl thioether in the reaction with phenylazide, the most effective solvent was a mixture of tetrahydrofuran and water. While the cycloaddition of pentynyl thioether with phenyl and benzyl azides was carried out in a dimethylformamide-water mixture. As a result, the new hybrid 1,2,3-triazolylthiobenzothiazoles, which can potentially exhibit high bioactivity, were synthesized in high yields and separated by two or three methylene spacers.

References

Salma, U., Ahmad, S., Alam, M. Z., Khan, S. A. (2024). Synthetic approaches and biological applications of triazole derivatives. Mol. Struct., 1301(137240). https://doi.org/10.1016/j.molstruc.2023.137240

Fan, Y. L., Ke, X., Liu, M. (2018). Coumarin–triazole hybrids and their biological activities. J. Heterocycl. Chem., 55(4), 791–802. https://doi.org/10.1002/jhet.3112

Phatak, P. S., Sathe, B. P., Dhumal, S. T., Rehman, N. N., Dixit, P. P., Khedkar, V. M., Haval, K. P. (2019). Synthesis, Antimicrobial Evaluation, and Docking Studies of Substituted Acetylphenoxymethyl‐triazolyl‐N‐phenylacetamides. J. Heterocycl. Chem., 56(7), 1928–1938. https://doi.org/10.1002/jhet.3568

Jadhav, R. P., Raundal, H. N., Patil, A. A., Bobade, V. D. (2017). Synthesis and biological evaluation of a series of 1, 4-disubstituted 1, 2, 3-triazole derivatives as possible antimicrobial agents. J. Saudi Chem. Soc., 21(2), 152–159. https://doi.org/10.1016/j.jscs.2015.03.003

Yadav, A., Kaushik, C. P. (2022). Synthesis and antibacterial evaluation of sulfonamide bridged disubstituted 1, 2, 3-triazoles. Synth. Commun., 52(24), 2261–2275. https://doi.org/10.1080/00397911.2022.2141126

Bo Zhang (2019). Comprehensive review on the anti-bacterial activity of 1,2,3-triazole hybrids. Eur. J. Med. Chem., 168, 357–372. https://doi.org/10.1016/j.ejmech.2019.02.055

Marinescu, M. (2023). Benzimidazole-triazole hybrids as antimicrobial and antiviral agents: A systematic review. Antibiotics, 12(7), 1220. https://doi.org/10.3390/antibiotics12071220

Dwivedi, B., Bhardwaj, D., Choudhary, D. (2024). Green design and synthesis of some novel thiazolidinone appended benzothiazole–triazole hybrids as antimicrobial agents. RSC advances, 14(12), 8341–8352. https://doi.org/10.1039/D4RA00990H

Marzi, M., Farjam, M., Kazeminejad, Z., Shiroudi, A., Kouhpayeh, A., Zarenezhad, E. (2022). A recent overview of 1, 2, 3‐triazole‐containing hybrids as novel antifungal agents: Focusing on synthesis, mechanism of action, and structure‐activity relationship (SAR). Journal of Chemistry, 2022(1), 7884316. https://doi.org/10.1155/2022/7884316

Subhashini, N. J. P., Kumar, E. P., Gurrapu, N., Yerragunta, V. (2019). Design and synthesis of imidazolo-1, 2, 3-triazoles hybrid compounds by microwave-assisted method: Evaluation as an antioxidant and antimicrobial agents and molecular docking studies. J. Mol. Struct., 1180, 618–628. https://doi.org/10.1016/j.molstruc.2018.11.029

Chavan, P. V., Desai, U. V., Wadgaonkar, P. P., Tapase, S. R., Kodam, K. M., Choudhari, A., Sarkar, D. (2019). Click chemistry based multicomponent approach in the synthesis of spirochromenocarbazole tethered 1, 2, 3-triazoles as potential anticancer agents. Bioorg. Chem., 85, 475–486. https://doi.org/10.1016/j.bioorg.2019.01.070

Çeşme, M., Onur, S., Aksakal, E. Tümer, F. (2024). Novel hybrid structures based on 4-Chlorobenzenesulfonyl and 1,2,3-triazoles: Synthesis, in vitro biological activities and in silico studies. J. Mol. Liq., 409, 125501. https://doi.org/10.1016/j.molliq.2024.125501

El Azab, I.H., El-Sheshtawy, H.S., Bakr, R.B., Elkanzi N.A.A. (2021). New 1,2,3-Triazole-Containing Hybrids as Antitumor Candidates: Design, Click Reaction Synthesis, DFT Calculations, and Molecular Docking Study. Molecules, 26(3), 708. https://doi.org/10.3390/molecules26030708

Menendez, C., Gau, S., Lherbet, C., Rodriguez, F., Inard, C., Pasca, M. R., Baltas, M. (2011). Synthesis and biological activities of triazole derivatives as inhibitors of InhA and antituberculosis agents. Eur. J. Med. Chem., 46(11), 5524–5531. https://doi.org/10.1016/j.ejmech.2011.09.013

Zhang, S., Xu, Z., Gao, C., Ren, Q. C., Chang, L., Lv, Z. S., Feng, L. S. (2017). Triazole derivatives and their anti-tubercular activity. Eur. J. Med. Chem., 138, 501–513. https://doi.org/10.1016/j.ejmech.2017.06.051

Haleha, O. V., Povidaichyk, M. V., Svalyavin, O. V., Ostapchuk, E. M., Onysko, M. Y. (2023). [Synthesis and conversion of thiazinobenzothiazolium salts]. Voprosy khimii i khimicheskoi tekhnologii., 2, 61–66. (in Ukrainian). http://dx.doi.org/10.32434/0321-4095-2023-147-2-61-66

Haleha, O. V., Povidaichyk, M. V., Komarovska-Porokhnyavets, O. Z., Onysko, M. Y., Sukharev S. М. [Synthesis and antimicrobial activity of seleno(mercury)halogen-containing benzothiazole derivatives]. Sci. Bull. Uzhh. Univ. Ser. Chem., 49(1), 39–44. (in Ukrainian). https://doi.org/10.24144/2414-0260.2023.1.39-44

Shafi, S., Alam, M. M., Mulakayala, N., Mulakayala, C., Vanaja, G., Kalle, A. M., Alam, M. S. (2012). Synthesis of novel 2-mercapto benzothiazole and 1, 2, 3-triazole based bis-heterocycles: their anti-inflammatory and anti-nociceptive activities. Eur. J. Med. Chem., 49, 324–333. https://doi.org/10.1016/j.ejmech.2012.01.032

Mir, F., Shafi, S., Zaman, M. S., Kalia, N. P., Rajput, V. S., Mulakayala, C., Alam, M. S. (2014). Sulfur rich 2-mercaptobenzothiazole and 1, 2, 3-triazole conjugates as novel antitubercular agents. Eur. J. Med. Chem., 76, 274–283. https://doi.org/10.1016/j.ejmech.2014.02.017

Kuribayashi, S., Shida, N., Inagi, S., Fuchigami, T. (2016). Synthesis of fluorinated triazole and isoxazole derivatives by electrochemical fluorination. Tetrahedron, 72(35), 5343–5349. https://doi.org/10.1016/j.tet.2016.07.016

Gong, Z., Peng, Y., Qiu, J., Cao, A., Wang, G., Peng, Z. (2017). Synthesis, In Vitro α-Inhibitory Activity and Molecular Docking Studies of Novel Benzothiazole-Triazole Derivatives. Molecules, 22(9), 1555. https://doi.org/10.3390/molecules22091555

Fizer, M., Slivka, M.; Baumer, V.; Slivka, M.; Fizer, O. (2019). Alkylation of 2-oxo(thioxo)-thieno[2,3-d]pyrimidine-4-ones: Experimental and theoretical study. Journal of Molecular Structure, 1198, 126858. https://doi.org/10.1016/j.molstruc.2019.07.105

Jaiswal, S., Devi, M., Sharma, N., Rathi, K., Dwivedi, J., Sharma, S. (2022). Emerging approaches for synthesis of 1, 2, 3-triazole derivatives. a review. Organic Preparations and Procedures International, 54(5), 387–422. https://doi.org/10.1080/00304948.2022.2069456

Reddy, G. S., Reddy, L. M., Kumar, A. S., Ramachary, D. B. (2020). Organocatalytic Selective [3+ 2] Cycloadditions: Synthesis of Functionalized 5-Arylthiomethyl-1, 2, 3-triazoles and 4-Arylthio-1, 2, 3-triazoles. The Journal of Organic Chemistry, 85(23), 15488–15501. https://doi.org/10.1021/acs.joc.0c02247

Kumar, S., Lal, B., Tittal, R. K. (2024). Green Synthesis of 1, 2, 3-Triazoles: A Sustainable Approach. Green Chemistry. https://doi.org/10.1039/D3GC04346

Hu, H., Ohno, A., Sato, T., Mase, T., Uozumi, Y., Yamada, Y. M. (2019). Self-assembled polymeric pyridine copper catalysts for Huisgen cycloaddition with alkynes and acetylene gas: application in synthesis of tazobactam. Org. Process Res. Dev., 23(4), 493–498. https://doi.org/10.1021/acs.oprd.8b00429

Trujillo, M., Hull-Crew, C., Outlaw, A., Stewart, K., Taylor, L., George, L., .Schoffstall, A. (2019). Green methodologies for copper (I)-catalyzed azide-alkyne cycloadditions: a comparative study. Molecules, 24(5), 973. https://doi.org/10.3390/molecules24050973

Rzonsowska, M., Kozakiewicz, K., Mituła, K., Duszczak, J., Kubicki, M., Dudziec, B. (2021). Synthesis of silsesquioxanes with substituted triazole ring functionalities and their coordination ability. Molecules, 26(2), 439. https://doi.org/10.3390/molecules26020439

Mittersteiner, M., Aquino, E. C., Budragchaa, T., Wessjohann, L. A., Bonacorso, H. G., Martins, M. A., Zanatta, N. (2022). Synthesis of Methylene-Bridged Trifluoromethyl Azoles Using 5-(1, 2, 3-Triazol-1-yl) enones. Synthesis, 54(02), 439–450. https://doi.org/10.1055/s-0040-1719837

Bagra, N., Jain, R. (2022). Synthesis of 4-(1, 2, 3-triazol-1-yl)-L-phenylalanines. Synthetic Communications, 52(8), 1176–1183. https://doi.org/10.1080/00397911.2022.2077114

Nural, Y., Ozdemir, S., Doluca, O., Demir, B., Yalcin, M. S., Atabey, H., Seferoglu, Z. (2020). Synthesis, biological properties, and acid dissociation constant of novel naphthoquinone–triazole hybrids. Bioorganic Chemistry, 105, 104441. https://doi.org/10.1016/j.bioorg.2020.104441

Igual, M. O., Nunes, P. S., da Costa, R. M., Mantoani, S. P., Tostes, R. C., Carvalho, I. (2019). Novel glucopyranoside C2-derived 1, 2, 3-triazoles displaying selective inhibition of O-GlcNAcase (OGA). Carbohydrate research, 471, 43–55. https://doi.org/10.1016/j.carres.2018.10.007

Published

2025-01-23

Issue

Section

Special issue International Chemical Hub Forum