STUDY ON PARTICIPATION OF CAMELINA SATIVA SEEDCAKE EXTRACT COMPONENTS IN THE SYNTHESIS OF CERIUM DIOXIDE NANOPARTICLES

Authors

DOI:

https://doi.org/10.15421/jchemtech.v32i4.316488

Keywords:

Camelina sativa, extract, nanoparticles, cerium oxide, «green» synthesis

Abstract

Aim. To evaluate the possibility of using the extract from Camelina sativa seedcake for the green synthesis of cerium oxide nanoparticles (CeO2-NPs), to investigate the composition of this extract, to elucidate which components participate in the formation of CeO2-NPs, to characterize the CeO2-NPs obtained. Methods. High-performance liquid chromatography and matrix-assisted laser desorption/ionization mass spectrometry were used to identify the components of Camelina sativa seedcake extract and of the reaction mixture after removal of CeO2-NPs. X-ray diffraction, thermal desorption of argon, transmission electron microscopy, dynamic light scattering were used to characterize the CeO2-NPs obtained. Results. The main components of the extract are phenolic acids and/or their derivatives (ferulic acid, hydroxycavic acid, sinapin), flavonoids (rutin, quercetin, quercetin-2-O-apiosyl-3-O-rutinoside), glucosinolates (glucoarabin, glucocamelinin, gluconesliapaniculatin), unsaturated fatty acids and their esters. The majority of phenolic acids and flavonoids as well as some portion of glucosinolates participate in the formation of nanoparticles. The obtained CeO2-NPs have a cubic crystalline structure with an average crystallite size of 23 nm, while the largest percentage of nanoparticles has a diameter of 30÷50 nm. Conclusions. The possibility of using the extract from Camelina sativa seedcake for the green synthesis of CeO2-NPs is shown and the main components of the extract were identified. The majority of identified components of the extract participate in the formation of CeO2-NPs. The obtained CeO2-NPs are crystalline and their size allows them to be used in various biomedical applications.

References

Bhattarai, B., Zaker, Y., Terry P. Bigioni, T. P. (2018). Green synthesis of gold and silver nanoparticles: Challenges and opportunities. Curr.Opin. Green Sustain. Chem., 12, 91–100. https://doi.org/10.1016/j.cogsc.2018.06.007.

Alharbi, N.S., Alsubhi, N.S., Felimban, A.I., Alsubhi, N.S. (2022). Green synthesis of silver nanoparticles using medicinal plants: Characterization and application. Journal of Radiation Research and Applied Sciences, 15(3), 109–124.

Sharma, A., Rejeeth, C., Vivek, R., Varukattu Nipun Babu, V. N., Ding, X.. (2020). Novel Green Silver Nanoparticles as Matrix in the Detection of Small Molecules Using Matrix-Assisted Laser Desorption Ionization Mass Spectrometry (MALDI-MS). J Pharm Innov, 16, 715–725. https://doi.org/10.1007/s12247-020-09486-6.

Laguta, I., Fesenko, T., Stavinskaya, O., Dzjuba, O., Shpak, L. (2016). Antioxidant and Antimicrobial Properties of Stevia Leaves Extracts and Silver Nanoparticles Colloids. Chemistry Journal of Moldova, 11(2), 46–51. http://dx.doi.org/10.19261/cjm.2016.11(2).08.

Ayub, M. A., Sohail, M. I., Umair, M., Zia ur Rehman, M., Usman, M., Sabir, M., Rizwan, M., Ali, S., Ahmad, Z. (2019). Chapter Eight - Cerium oxide nanoparticles: Advances in synthesis, prospects and application in agro-ecosystem. Comprehensive Analytical Chemistry, 87, 209–250. https://doi.org/10.1016/bs.coac.2019.10.003.

Sriramcharan, P., Natarajan, J., Raman, R., Nagaraju, G., Justin, A., Senthil, V. (2022). A Review on Green-Syntheses of Cerium Oxide Nanoparticles: Focus on Central Nervous System Disoders. International Journal of Applied Pharmaceutics, 14(4), 94–102. https://doi.org/10.22159/ijap.2022v14i4.44487.

Druzian, D. M., Oviedo, L. R., Loureiro, S. N., Wouters, R. D., Vizzotto, B. S., Pinto, E. O., Schűssler de Vanconcellos, N. J., Moreno Ruiz, Y. P., Galembeck, A., Pavoski, G., Romano Espinosa, D. G., Cristiane dos Santos, Leonardo da Silva, W. (2023). Cerium oxide nanoparticles: Biosynthesis, characterization, antimicrobial, ecotoxicity and photocatalytic activity, Journal of Photochemistry and Photobiology A: Chemistry, 442, 114773. https://doi.org/10.1016/j.jphotochem.2023.114773.

Fifere, N., Airinei, A., Doroftei, F., Ardeleanu, T. S., Dobromir, M., Tîmpu, D., Ursu, E.-L. (2023). Phytomediated-Assisted Preparation of Cerium Oxide Nanoparticles Using Plant Extracts and Assessment of Their Structural and Optical Properties. Int. J. Mol. Sci., 24, 8917. https://doi.org/10.3390/ ijms24108917.

Nosrati, H., Heydari, M., Khodaei, M. (2023). Cerium oxide nanoparticles: Synthesis methods and applications in wound healing. Materials Today Bio, 23, 100823. https://doi.org/10.1016/j.mtbio.2023.100823.

Devi, N. S., Ganapathy, D. M., Rajeshkumar, S., Maiti, S. (2022). Characterization and antimicrobial activity of cerium oxide nanoparticles synthesized using neem and ginger. Journal of advanced pharmaceutical technology & research, 13(2), S491–S495. https://doi.org/10.4103/japtr.japtr_196_22

Selvaraj, S., Chauhan, A., Radhakrishnan, A., Rana, G., Dutta, V., Batoo, K. M., Suresh Ghotakar, S. (2024). Cerium Oxide Nanoparticles and Their Polymeric Composites: Advancements in Biomedical Applications. J Inorg Organomet Polym. https://doi.org/10.1007/s10904-024-03263-5 .

Nadeem, M., Khan, R., Afridi, K., Nadhman, A., Ullah, S., Faisal, S., Mabood, Z. U., Hano, C., Abbasi, B. H. (2020). Green Synthesis of Cerium Oxide Nanoparticles (CeO2 NPs) and Their Antimicrobial Applications: A Review. International journal of nanomedicine, 15, 5951–5961. https://doi.org/10.2147/IJN.S255784 .

Khan, M., Mashwani, Z. U., Ikram, M., Raja, N. I., Mohamed, A. H., Ren, G., Omar, A. A. (2022). Efficacy of Green Cerium Oxide Nanoparticles for Potential Therapeutic Applications: Circumstantial Insight on Mechanistic Aspects. Nanomaterials (Basel, Switzerland), 12(12), 2117. https://doi.org/10.3390/nano12122117/.

Nyoka, M., Choonara, Y. E., Kumar, P., Kondiah, P. P. D., Pillay, V. (2020). Synthesis of Cerium Oxide Nanoparticles Using Various Methods: Implications for Biomedical Applications. Nanomaterials (Basel, Switzerland), 10(2), 242. https://doi.org/10.3390/nano10020242.

Fesenko, T., Laguta, I., Stavinskaya, O., Kuzema, P., Anishchenko, V., Oranska, O., Ivannikov, R., Diyuk, O., Skorochod, I. (2023). Green synthesis of antibacterial cerium oxide nanoparticles using Magnolia kobus leaves extract. Chemistry, Physics and Technology of Surface, 14(4), 546–554. https://dx.doi.org/10.15407/hftp14.04.546

Fesenko, T., Laguta, I., Stavynska, O., Oranska, O. (2020). Synthesis of cerium oxide nanoparticles using Vitex extract. Chemistry, Physics and Technology of Surface, 11(4), 477–483. https://dx.doi.org/10.15407/hftp11.04.477.

Cojocariu, R. O., Balmus, I. M., Lefter, R., Hritcu, L., Ababei, D. C., Ciobica, A., Copaci, S., Mot, S. E. L., Copolovici, L., Copolovici, D. M., Jurcoane, S. (2020). Camelina sativa Methanolic and Ethanolic Extract Potential in Alleviating Oxidative Stress, Memory Deficits, and Affective Impairments in Stress Exposure-Based Irritable Bowel Syndrome Mouse Models. Oxidative medicine and cellular longevity, 2020, 9510305. https://doi.org/10.1155/2020/9510305.

William (Bill) W. Christie. LipidMaps [Internet]. https://www.lipidmaps.org/resources/lipidweb/lipidweb_html/ms/methesters/me- arch/index.htm

Berhow, M. A., Vaughn, S. F., Moser, B. R., Belenli, D., Polat, U. (2014). Evaluating the Phytochemical Potential of Camelina : An Emerging New Crop of Old World Origin. Recent Advances in Phytochemistry, 44, 129–148. https://doi.org/289471/

Razeq, F. M., Kosma, D. K., França, D., Rowland, O., Molina, I. (2021). Extracellular lipids of Camelina sativa: Characterization of cutin and suberin reveals typical polyester monomers and unusual dicarboxylic fatty acids. Phytochemistry, 184, 112665. https://doi.org/10.1016/j.phytochem.2021.112665/.

Lisova, T. O., Trzhetsynskyi, S. D. (2022). [Study of fatty acids of Camelina sativa (L.) Crantz]. Pharmaceutical Review, 1, 5–11. (in Ukrainian). https://doi.org/10.11603/2312-0967.2022.1.12772 .

Ghidoli, M., Pesenti, M., Colombo, F., Nocito, F. F., Pilu, R., Aranit,i F. (2023). Camelina sativa (L.) crantz as a promising cover crop species with allelopathic potential. Agronomy, 13, 2187–2204. https://doi.org/10.3390/agronomy13082187

Pagliari, S., Domínguez-Rodríguez, G., Cifuentes, A., Ibáñez, E., Labra, M., Campone, L. (2024). Pressurized liquid extraction of glucosinolates from Camelina sativa (L.) Crantz by-products: Process optimization and biological activities of green extract. Food chemistry: X, 22, 101324. https://doi.org/10.1016/j.fochx.2024.101324.

Meza, S., Zhou, Y., Chastain, J., Yang, Y., Cheng, H. H., Iassonova, D., Rivest, J., You, H. (2022). Eco-Efficient Quantification of Glucosinolates in Camelina Seed, Oil, and Defatted Meal: Optimization, Development, and Validation of a UPLC-DAD Method. Antioxidants (Basel, Switzerland), 11(12), 2441. https://doi.org/10.3390/antiox11122441.

Fesenko, T., Stavynska, O., Kuzema, P., Oranska, O., Borysenko, M., Anishchenko, V., Mischanchuk, О., Laguta, I. (2024) [Synthesis of cerium oxide nanoparticles using Camelina sativa seedcake extract sativa]. In A. I. Vovk, Bioactive compounds, new substances and materials. Kyiv: Interservice (in Ukrainian).

Published

2025-01-23

Issue

Section

Special issue International Chemical Hub Forum