SYNTHESIS OF ANTHRACENEDIONE-CONTAINING TRIAZENES AND REVIEW THEIR CHEMICAL AND BIOLOGICAL ACTIVITY

Authors

DOI:

https://doi.org/10.15421/jchemtech.v33i2.317850

Keywords:

anthracenedione-containing triazenes; methylene-active compounds; reaction N-azo coupling; diazotization; antitumor activity; antimicrobial activity; toxicity.

Abstract

Aromatic compounds containing the triazene group (-N=N-N-) have had a profound impact on synthetic organic and medicinal chemistry. However, the chemistry of anthracenedione-containing triazenes has been largely unexplored until recently. This has changed over the past decade, and it has become apparent that anthracenedione-containing triazenes are very interesting compounds with unique reactivity. In this review, we summarize recent developments in this field. The review paper first summarizes the preparation of anthracenedione-containing triazenes and describes the spectrum of their biological activity. The review is devoted to the synthesis of triazenes based on anthraquinone derivatives obtained by diazotization and N-azo coupling reactions according to publications in the SciFinder and Reaxys databases over the past recent years. The starting materials for obtaining -N=N-N- groups in the anthraquinone ring were most often derivatives of aliphatic and aromatic amines. Analysis of literature sources showed that anthracenedione-containing triazenes are relatively unstable and exhibit weak reactivity, entering into cyclocondensation reactions, substitution with methylene-active compounds with the formation of the corresponding hydrazine derivatives and others given in the review. And they have moderate biological activity, which is significantly inferior to the triazenes of the benzene series.

References

Lombardi, N., Bettiol, A., Crescioli, G., Maggini, V., Gallo, E., Sivelli, F., Firenzuoli, F. (2020). Association between anthraquinone laxatives and colorectal cancer: Protocol for a systematic review and meta-analysis. Systematic Reviews, 9, 19. https://doi.org/10.1186/s13643-020-1280-5

Tian, W., Wang, C., Li, D., Hou, H. (2020). Novel anthraquinone compounds as anticancer agents and their potential mechanism. Future Med Chem., 12(7), 627–644, 32175770. doi: 10.4155/fmc-2019-0322

Gecibesler, I.H., Disli, F., Bayindir, S., Toprak, M., Tufekci, A.R., Yaglıoglu, A.S., Altun, M., Kocak, A., Demirtas, E., Adem, S. (2021). The isolation of secondary metabolites from Rheum ribes L. and the synthesis of new semi-synthetic anthraquinones: Isolation, synthesis and biological activity. Food Chem., 42, 128378. https://doi.org/10.1016/j.foodchem.2020.128378

Lozynskyi, A., Sabadakh, O., Luchkevich, E., Taras, T., Vynnytska, R., Karpenko, O., Novikov, V., Lesyk, R. (2018). The application of anthraquinone-based triazenes as equivalents of diazonium salts in reaction with methylene active compounds. Phosphorus Sulfur Silicon Relat. Elem., 193(7), 409–414. https://doi.org/10.1080/10426507.2018.1452236

Zhang, Q.; Liu, J., Li, R., Zhao, R., Zhang, M., Wei, S., Ran, D., Jin, W., Wu, C. (2020). A network pharmacology approach to in-vestigate the anticancer mechanism and potential active ingredients of Rheum Palmatum L. against lung cancer via induction of apoptosis. Front. Pharmacol., 11, 528308. https://doi.org/10.3389/fphar.2020.528308

Mugas, ML, Marioni, J, Martinez, F., Aguilar, J., Cabrera, J., Contigiani, M.S., Konigheim, B. (2021). Inactivation of herpes simplex virus by photosensitizing anthraquinones isolated from heterophyllaea pustulata. Planta Med., 80, 716–723. doi: 10.1055/a-1345-6831

Stasevych, M., Zvarych, V., Novikov, V., Vovk, M. (2021). Synthesis and Study of Antimicrobial Activity of 2-Dithiocarbamate-N-(9,10-Dioxo-9,10-Dihydroanthracenyl)Acetamides. Biointerface Res. Appl. Chem., 11, 7725–7734. https://doi.org/10.33263/BRIAC111.77257734

Chen, R-R., Liu, J., Chen, Z., Cai, W-J., Li. X-F., Lu, C-L. (2020). Anthraquinones extract from morinda angustifolia roxb. Root alleviates hepatic injury induced by carbon tetrachloride through inhibition of hepatic oxidative stress. Evid Based Complement Altern Med., 2020. https://doi.org/10.1155/2020/9861571

Hussain, H., Al-Harrasi. A., Al-Rawahi, A,, Green, I.R., Csuk, R., Ahmed, I., Shah, A, Abbas, G, Rehman, N.U,, Ullah, R. (2015). A fruitful decade from 2005 to 2014 for anthraquinone patents. Expert Opin Ther. Pat. 25, 1053–1064. https://doi.org/10.1517/13543776.2015.1050793

Zeng, H.J., Sun, D.Q., Chu, S.H., Zhang, J.J., Hu, G.Z., Yang, R. (2020). Inhibitory effects of four anthraquinones on tyrosinase activity: Insight from spectroscopic analysis and molecular docking. Int. J. Biol. Macromol. 160, 153–163. https://doi.org/10.1016/j.ijbiomac.2020.05.193

Baqi, Y., Lee, S.Y., Iqbal, J., Ripphausen, P., Lehr, A., Scheiff. A.B.. Zimmermann, H.; Bajorath, J., Müller, C.E. (2010). Development of potent and selective inhibitors of ecto-5′-nucleotidase based on an anthraquinone scaffold. J. Med. Chem., 53(5), 2076–2086. https://doi.org/10.1021/jm901851t

Ramadhan, A., Wardani, A.K., Chang, C.I. (2020). Anthraquinone derivatives and its antibacterial properties from paederia foetida stems. The Natural Products Journal, 10, https://doi.org/10.2174/2210315510666191224103057.

Shrestha, J.P., Subedi, Y.P., Chen, L., Chang, C.W.T. (2015). A mode of action study of cationic anthraquinone analogs: A new class of highly potent anticancer agents. Med. Chem. Comm., 6(11), 2012–2022. https://doi.org/10.1039/C5MD00314H

Baqi, Y., Atzler, K., Köse, M., Glänzel, M., Müller, C.E. (2009). High-affinity, non-nucleotide-derived competitive antagonists of platelet P2Y12 receptors. J. Med. Chem., 52(12), 3784–3793. https://doi.org/10.1021/jm9003297

Glänzel, M., Bültmann, R., Starke, K., Frahm, A.W. (2005). Structure–activity relationships of novel P2-receptor antagonists structurally related to Reactive Blue 2. Eur. J. Med. Chem., 40(12), 1262–1276.

Tian, M., Abdelrahman, A., Baqi, Y., Fuentes, E., Azazna, D., Spanier, C., Densborn, S., Hinz, S., Schmid, R., Muller, C.E. (2020). Discovery and Structure Relationships of Salicylanilide Derivatives as Potent, Non-acidic P2X1 Receptor Antagonists. J. Med. Chem, 63, 6164–6178. doi: 10.1021/acs.jmedchem.0c00435

Roy, S., Large, R.J., Akande, A.M., Kshatri, A., Webb, T.I., Domene, C., Sergeant, G.P., McHale, N.G., Thornbury, K.D., Hollywood, M.A. (2014). Development of GoSlo-SR-5-69, a potent activator of large conductance Ca2+-activated K+ (BK) channels. Eur. J. Med. Chem., 75, 426–437. https://doi.org/10.1016/j.ejmech.2014.01.035

Shupeniuk, V., Nepolraj, A., Taras, T., Sabadakh, O., Matkivskyi, M., Luchkevich E. (2022). Іn-silico study of anthraquinone de-rivatives as probable inhibitors of COVID-19. J. Chem. Technol., 30(2), 151–158. https://doi.org/10.15421/jchemtech.v30i2.244728

Shupeniuk, V., Taras, T., Sabadakh, O., Luchkevich, E., Matkivskyi, M., Kutsyk R. (2022). Synthesis and antimicrobial activity of nitrogen-containing anthraquinone derivatives. Iraqi J. Pharm. Sci., 31(2): 193–201. https://doi.org/10.31351/vol31iss2pp193-201

Lozynskyi, A., Holota, S., Yushyn, I., Sabadakh, O., Karpenko, O., Novikov, V., Lesyk R. (2021). Synthesis and Biological Activity Evaluation of Polyfunctionalized Anthraquinonehydrazones. Lett. Drug. Des. Discov., 18(2), 199–209. https://doi.org/10.2174/1570180817999200802032844

Suleymanov, A. A., Severin, K. (2021). Vinyl and Alkynyl Triazenes: Synthesis, Reactivity, and Applications. Angew. Chem., Int. Ed., 60(13), 6879−6889. https://doi.org/10.1002/ange.202011031

Kimball, D. B., Haley, M. M. (2002). Triazenes: A Versatile Tool in Organic Synthesis. Angew. Chem., Int. Ed., 41(18), 3338−3351. https://doi.org/10.1002/1521-3773(20020916)41:18<3338::AID-ANIE3338>3.0.CO;2-7

Suleymanov, A. A., Scopelliti, R., Fadaei Tirani, F., Severin, K. (2018). One-Pot Synthesis of Trisubstituted Triazenes from Grignard Reagents and Organic Azides. Org. Lett., 20(11), 3323−3326. https://doi.org/10.1021/acs.orglett.8b01214

Wacker L. (1902). Ueber den Austausch der Diazogruppe durch die Amidogruppe, Chem. Ber., 35, 2593–2602.

Gatterman, L., Eber, R. (1916). Über Azido- sowie stereoisomere Azo- und Hydrazoderivate des Anthrachinons, Chem. Ber., 49(2), 2111–2120. https://doi.org/10.1002/cber.19160490271

Shol, R. (1904). Constitution des Dibrom- 1.5-diamido-anthrachinons, Chem. Ber., 37(4), 4681–4686.

Sabadakh, O.P. (2019). [Synthesis, properties and biological activity of 9,10-anthracenediones and their derivatives]. dissertation for the degree of Candidate of Chemical Sciences, Lviv. (In Ukrainian).

Shupeniuk, V.I. (2023). [Synthesis of tryazenes based on 4-substituted 9,10-anthraquinone derivatives]. Lviv. (In Ukrainian).

Shupeniuk V. I., Taras T. M., Bolibrukh L. D., Zhurakhivska L. R., Hubytska I. I. (2018). Interaction between structure and activity of synthesize triazenes at 4-substituted 9,10-anthraquinone. Journal of Lviv Polytechnic National University Series of Chemistry, Materials Technology and their Application, 868, 136-145 [in Ukrainian]

Lynas-Gray, J. I., Simonsen, J. L. (1943). The Action of Dases on 1-Diazoanthraquinone-2-sulphonate and its Derivatives, J. Chem. Soc., 45–47. https://doi.org/10.1039/JR9430000045

Landman, I.R. (2022). Synthetic chemistry with nitrous oxide and triazenes. Doctoral thesis. Lausanne. doi 10.5075/epfl-thesis-9238

Taras, T. M.; Dejchakivsky, Y. I.; Shupeniuk, V. I.; Sabadakh, O. P.; Bolibrukh, L. D. (2019). [The special characteristics of the tryazeniv anthraquinonovho ryad The special characteristics of the anthraquinone triazene series]. Khimija, tekhnologhija rechovyn ta jikh zastosuvannja, 2(1). (in Ukrainian). https://doi.org/10.23939/ctas2019.01.092

Grachev, I.V., Gusev G.G., Zavelsky D.Z. (1957). The neutral form of a diazo compound. Journal of General Chemistry of the USSR, 2865.

Weng, M., Jochims, J.C. (2000). Preparation of glycosyltriazenes. J. Prakt. Chem., 342, 530. https://doi.org/10.1002/1521-3897(200006)342:6<530::AID-PRAC530>3.0.CO;2-U

Shupeniuk, V., . Zavhorodnii, M.P., Derevianko, N.P., Taras, T., Shkopynska, T.Y., Brazhko, O.A., Matkivskyi, M. (2023). Search of regulators among (7-chloroquinoline-4-ylthio)carbonic acids and triazoles of anthracendione for microclonal propagation of plants. J. Chem. Technol., 31(1), 20–27. doi: 10.15421/jchemtech.v31i1.271400

Lozynskyi, A. V., Konechnyi, Y. T., Roman, O. M., Horishny, V. Y., Sabadakh, O. P., Pasichnyk, S. M., Konechna, R. T., Shupeniuk, V. I., Taras, T. M., Lesyk, R. B. (2023). New polyfunctionalized 2-hydrazinoanthraquinone derivatives as potential antimicrobial agents. Biopolymers & Cell, 39(1), 42–53. https://doi.org/10.7124/bc.000A84

Siddamurthi, S., Gutti, G., Jana, S., Kumar, A., Singh, S.K. (2020). Anthraquinone: a promising scaffold for the discovery and development of therapeutic agents in cancer therapy. Future Med. Chem., 12(11), 1037–1069. https://doi.org/10.4155/fmc-2019-0198

Hafez Ghoran, S., Taktaz, F., Ayatollahi, S. A., Kijjoa, A. (2022). Anthraquinones and their analogues from marinederived fungi: Chemistry and biological activities. Marine Drugs, 20(8), 474. https://doi.org/10.3390/md20080474

Karanfil, D. Y., Coşkun, R., Delibaş, A. (2022). Aminated magnetic polymeric resin for removal of anthraquinone and azo dyes from aqueous solutions. Journal of Polymer Research, 29(3), 87. https://doi.org/10.1007/s10965-022-02945-3

Shrestha, J. P, Subedi, Y. P, Chen, L, Chang, C-W. T. (2015). A mode of action study of cationic anthraquinoneanalogs: A new class of highly potent anticancer agents. Med. Chem. Comm., 6(11), 2012–2022. https://doi.org/10.1039/C5MD00314H

Su, G.Y., Chen, M.L., Wang, K.W. (2020). Natural New Bioactive Anthraquinones from Rubiaceae. Mini-Reviews in Organic Chemistry., 17, 872–883. https://doi.org/10.2174/1570193X17666200107092510

Hussain, H., Al-Harrasi, A., Al-Rawahi, A., Green, I.R., Csuk, R., Ahmed, I., Shah, A., Abbas, G., Rehman, N.U., Ullah, R. (2015). A fruitful decade from 2005 to 2014 for anthraquinone patents. Expert Opin Ther Pat., 25, 1053–1064. https://doi.org/10.1517/13543776.2015.1050793

Francisco, A. P., Mendes, E., Santos, A. R., Perry, M. J. (2019). Anticancer Triazenes: From Bioprecursors to Hybrid Molecules. Curr. Pharm. Des, 25, 1–21. https://doi.org/10.2174/1381612825666190617155749

Abd Halim, A. N., Hussin, A. S. M., Ngaini, Z., Zamakshshari, N. H., Haron, I. Z. (2023). Synthesis, antibacterial potential and in silico molecular docking analysis of triazene compounds via diazo coupling reactions of an amine. Tetrahedron Letters, 132, 154803. https://doi.org/10.1016/j.tetlet.2023

Khanal, P., Patil, B.M., Chand, J., Naaz, Y. (2020). Anthraquinone Derivatives as an Immune Booster and their Therapeutic Option Against COVID-19. Nat. Prod. Bioprospect., 10, 325–335. https://doi.org/10.1007/s13659-020-00260-2

El Mazouri, S., Aanniz, T., Touhtouh, J., Kandoussi, I., Hakmi, M., Belyamani, L., Ibrahimi, A., Ouadghiri, M. (2021). Anthraquinones: A Promising Multi-target Therapeutic Scaffold To Treat Covid-19. Int. J. Appl. Biol. Pharm. Technol., 12, 338–355. 10.26502/ijabpt.202104

Shupenyuk, V.I., Mamykin, S.V., Taras, T.N., Matkivskyi, M.P., Sabadakh, O.P., Matkivskyi, O.M. (2020). Structure and Morphology of Anthraquinone Triazene Films on Silicon Substrate. Physics and Chemistry of Solid State, 21(1), 117–123. https://doi.org/10.15330/pcss.21.1.117-123

Shupeniuk, V. I.; Taras, T. M.; Sabadakh, O. P.; Bolibrukh L.D.; Zhurakhivska L. R. (2019). [Tryazenes based on 4-imidazole-substituted anthraquinone as imoviral inghibitors of protein]. Khimija, tekhnologhija rechovyn ta jikh zastosuvannja, 2(2). (in Ukrainian). https://doi.org/10.23939/ctas2019.02.135

Published

2025-07-15