INFLUENCE of SYNTHESIS pH on STRUCTURAL, DIELECTRIC and MAGNETIC PROPERTIES of MnFe2O4
DOI:
https://doi.org/10.15421/jchemtech.v33i1.318927Keywords:
MnFe2O4, coprecipitation, acidity, ferritizationAbstract
Dispersed manganese ferrite particles were obtained by a combined co-precipitation method at different pH of the initial solution (7–12). The structural, morphological, optical and magnetic properties of the synthesized nanoparticles were characterized using X-ray diffraction, scanning electron microscopy, and vibrational magnetometry. The XRD results showed that MnFe2O4 has a cubic spinel crystal structure with an average crystallite size of ~14–65 nm. The presence of additional phases is observed at low pH and pH greater than 12. Ferritization significantly depends on pH, which affects the phase composition of the products and the size of the crystallites. In addition, with an increase in pH from 7 to 12, the percentage of microstresses and the density of dislocations decreases. The obtained MnFe2O4 samples exhibit ferrimagnetic properties, the highest saturation magnetization value of 56.8 Emu/g is achieved at pH 10. In addition, the coercive force changes from 5 to 50 Oe with increasing pH due to the increase in crystallite size.
References
Chen, C. L., Dong, C. L., Chern, G., Kumar, K., Lin, H. J., Chen, C. T., Fujimori, A. (2014). Direct spectroscopic identification of the magnetic structure of the interface of Mn3O4/Fe3O4 superlattices. Journal of alloys and compounds, 614, 177–181. https://doi.org/10.1016/j.jallcom.2014.06.074
Salviano, L. B., Cardoso, T. M. D. S., Silva, G. C., Dantas, M. S. S., Ferreira, A. D. M. (2018). Microstructural assessment of magnetite nanoparticles (Fe3O4) obtained by chemical precipitation under different synthesis conditions. Materials Research, 21, e20170764. https://doi.org/10.1590/1980-5373-MR-2017-0764
Frolova, L. A., Khmelenko, O. V. (2021). The study of Co–Ni–Mn ferrites for the catalytic decomposition of 4-nitrophenol. Catalysis Letters, 151, 1522–1533. https://doi.org/10.1007/s10562-020-03419-1
Eyvazi, B., Jamshidi-Zanjani, A., Darban, A. K. (2020). Synthesis of nano-magnetic MnFe2O4 to remove Cr (III) and Cr (VI) from aqueous solution: A comprehensive study. Environmental Pollution, 265, 113685. https://doi.org/10.1016/j.envpol.2019.113685
Sun, Y., Feng, J., Zhu, W., Hou, R., Zhang, B., Ishag, A. (2024). The recent advances of MnFe2O4-based nanoparticles in environmental application: A review. Science of The Total Environment, 176378. https://doi.org/10.1016/j.scitotenv.2024.176378
Quang, N. V., Huong, P. T. L., Tu, N., Huyen, N. T., Tuan, N.T., Tran, M. T., Le, A. T. (2020). Effects of synthesis conditions on structure and magnetic properties of MnFe2O4 particles. Green Materials, 9(3), 108–119. https://doi.org/10.1680/jgrma.20.00010
Mazurenko, R., Prokopenko, S., Godzierz, M., Hercog, A., Makhno, S., Szeluga, U., Kartel, M. (2023). Synthesis of nanosized spinel ferrites MnFe2O4 on the surface of carbon nanotubes for the creation of polymer composites with enhanced microwave absorption capacity. Applied Materials Today, 35, 101972. https://doi.org/10.1016/j.apmt.2023.101972
Fei, M., Zhang, R., Li, L., Li, J., Ma, Z., Zhang, K., Yan, D. (2021). Epitaxial growth of MnFe2O4 nanosheets arrays for supercapacitor. Electrochimica Acta, 368, 137586. https://doi.org/10.1016/j.electacta.2020.137586
Shaw, S. K., Kailashiya, J., Gupta, S. K., Prajapat, C. L., Meena, S. S., Dash, D., Prasad, N. K. (2022). MnFe2O4 nano-flower: A prospective material for bimodal hyperthermia. Journal of Alloys and Compounds, 899, 163192. https://doi.org/10.1016/j.jallcom.2021.163192
Akhlaghi, N., Najafpour-Darzi, G. (2021). Manganese ferrite (MnFe2O4) Nanoparticles: From synthesis to application-A review. Journal of Industrial and Engineering Chemistry, 103, 292–304. https://doi.org/10.1016/j.jiec.2021.07.043
Rafienia, M., Bigham, A., Hassanzadeh-Tabrizi, S. A. (2018). Solvothermal synthesis of magnetic spinel ferrites. Journal of Medical Signals & Sensors, 8(2), 108–118.
Ju, Y. W., Park, J. H., Jung, H. R., Cho, S. J., Lee, W. J. (2008). Electrospun MnFe2O4 nanofibers: preparation and morphology. Composites Science and Technology, 68(7-8), 1704–1709. https://doi.org/10.1016/j.compscitech.2008.02.015
Amulya, M. S., Nagaswarupa, H. P., Kumar, M. A., Ravikumar, C. R., Kusuma, K. B. (2021). Sonochemical synthesis of MnFe2O4 nanoparticles and their electrochemical and photocatalytic properties. Journal of Physics and Chemistry of Solids, 148, 109661. https://doi.org/10.1016/j.jpcs.2020.109661
Chen, D., Zhang, Y., Kang, Z. (2013). A low temperature synthesis of MnFe2O4 nanocrystals by microwave-assisted ball-milling. Chemical Engineering Journal, 215, 235–239. https://doi.org/10.1016/j.cej.2012.10.061
Popa, M., Bruna, P., Crespo, D., Calderon Moreno, J. M. (2008). Single‐Phase MnFe2O4 Powders Obtained by the Polymerized Complex Method. Journal of the American Ceramic Society, 91(8), 2488–2494. https://doi.org/10.1111/j.1551-2916.2008.02501.x
Gao, L., Liu, Z., Yang, Z., Cao, L., Feng, C., Chu, M., Tang, J. (2020). Synthesis and magnetism property of manganese ferrite MnFe2O4 by selective reduction and oxidization roasting process. Applied Surface Science, 508, 145292. https://doi.org/10.1016/j.apsusc.2020.145292
Kalaiselvan, C.R., Laha, S.S., Somvanshi, S. B., Tabish, T.A., Thorat, N. D., Sahu, N. K. (2022). Manganese ferrite (MnFe2O4) nanostructures for cancer theranostics. Coordination Chemistry Reviews, 473, 214809. https://doi.org/10.1016/j.ccr.2022.214809
Chandunika, R. K., Vijayaraghavan, R., & Sahu, N. K. (2020). Magnetic hyperthermia application of MnFe2O4 nanostructures processed through solvents with the varying boiling point. Materials Research Express, 7(6), 064002. doi 10.1088/2053-1591/ab955e
Cigarroa-Mayorga, O. E. (2021). Tuning the size stability of MnFe2O4 nanoparticles: Controlling the morphology and tailoring of surface properties under the hydrothermal synthesis for functionalization with myricetin. Ceramics International, 47(22), 32397–32406. https://doi.org/10.1016/j.ceramint.2021.08.139
Wang, G., Zeng, Y., Zhou, F., Chen, X., Ma, Y., Zheng, L., Yu, R. (2020). One-step solvothermal synthesis of porous MnFe2O4 nanoflakes and their magnetorheological properties. Journal of Alloys and Compounds, 819, 153044. https://doi.org/10.1016/j.jallcom.2019.153044
Nguyen, T. D. H., Lin, M. F., Hsu, W. D. (2024). Investigations on electronic, magnetic, and optical properties of MnFe2O4 through first-principles calculations. Computational Materials Science, 235, 112831. https://doi.org/10.1016/j.commatsci.2024.112831
Poongodi, R., Senguttuvan, S., Sebastian, S., Sagayaraj, R. (2024). Analyzing the variations in electrical, structural and magnetic properties of zinc-doped MnFe2O4 ferrite obtained via co-precipitation. Journal of the Australian Ceramic Society, 1–12. https://doi.org/10.1007/s41779-024-01057-z
.Simon, C., Blösser, A., Eckardt, M., Kurz, H., Weber, B., Zobel, M., Marschall, R. (2021). Magnetic properties and structural analysis on spinel MnFe2O4 nanoparticles prepared via non‐aqueous microwave synthesis. Zeitschrift für anorganische und allgemeine Chemie, 647(22), 2061–2072. https://doi.org/10.1002/zaac.202100190
Wen, S., Chen, B., Zhang, J., Zhan, W., He, Z., Gao, L. (2023). Systematic Study on the Synthesis and Magnetism Properties of Manganese Ferrite MnFe2O4 by an Oxidation Roasting Process. Crystals, 13(10), 1509. https://doi.org/10.3390/cryst13101509
Frolova, L. A. (2019). The mechanism of nickel ferrite formation by glow discharge effect. Applied Nanoscience, 9, 845–852. https://doi.org/10.1007/s13204-018-0767-z
Frolova, L. A., Derhachov, M. P. (2017). The Effect of Contact Non-equilibrium Plasma on Structural and Magnetic Properties of MnХFe3− XО4 Spinels. Nanoscale research letters, 12, 1–9. https://doi.org/10.1186/s11671-017-2268-5
Frolova, L., Khmelenko, O. (2018). Investigation of the Magnetic Properties of Ferrites in the CoO‐NiO‐ZnO Using Simplex‐Lattice Design. Journal of Nanomaterials, 2018(1), 5686741. https://doi.org/10.1155/2018/5686741

Downloads
Published
Issue
Section
License
Copyright (c) 2025 Oles Honchar Dnipro National University

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).