GREEN SYNTHESIS OF TiO2 NANOPARTICLES: A PROMISING TOOL FOR WASTEWATER TREATMENT

Authors

  • A. Zeenath Bazeera Sadakathullah Appa College (Autonomous), Affiliated to Manonmaniam Sundaranar University Tirunelveli, India
  • Kairon Mubina M. S. Sadakathullah Appa College, Tirunelveli, Tamil Nadu, India https://orcid.org/0000-0003-1345-1890
  • S. M. Abdul Kader Sadakathullah Appa College (Autonomous), Affiliated to Manonmaniam Sundaranar University Tirunelveli, India https://orcid.org/0000-0001-6130-3855
  • M. Anisha Nashrin Sadakathullah Appa College (Autonomous), Affiliated to Manonmaniam Sundaranar University Tirunelveli, India

DOI:

https://doi.org/10.15421/jchemtech.v33i2.319532

Keywords:

TiO2 nanoparticles, Allium sativum, anti-bacterial, antifungal activity, Photodegradation, organic dyes

Abstract

Non-biodegradable organic pollutants, such as textile dyes, pose significant risks to human health and the environment. Photocatalysis offers a sustainable and cost-effective solution for degrading these pollutants while simultaneously preventing microbial contamination. This study investigates the photocatalytic and antimicrobial activities of green TiO₂ NPs synthesized using an aqueous extract of Allium sativum (garlic). XRD analysis confirmed the anatase phase with an average crystallite size of 52 nm, while FTIR identified the characteristic Ti-O-Ti vibrational band at 470 cm⁻¹. The NPs exhibited a band gap of 3.05 eV, UV absorbance at 337 nm, and a spherical morphology with slight agglomeration, as observed by FESEM. Antibacterial activity was demonstrated against Streptococcus pneumoniae and Proteus vulgaris, while antifungal activity was observed against Aspergillus niger and Rhizopus sp. Photocatalytic degradation achieved efficiencies of 78 % for Methylene Blue and 91 % for Rose Bengal, with kinetic rate constants of 0.008 min⁻¹ and 0.013 min⁻¹, respectively. These findings highlight the potential of green TiO₂ NPs as a cost-effective approach for environmental remediation and microbial control.

References

Kovács, I., Veréb, G., Kertész, S., Hodúr, C. and László, Z., (2018). Fouling mitigation and cleanability of TiO2 photocatalyst-modified PVDF membranes during ultrafiltration of model oily wastewater with different salt contents. Environmental Science and Pollution Research, 25, 34912–34921. https://doi.org/10.1007/s11356-017-0998-7

Ambade, B., Kumar, A., Gautam, S. (2024). Sustainable solutions: reviewing the future of textile dye contaminant removal with emerging biological treatments. Limnological Review, 24(2), 126. https://doi.org/10.3390/limnolrev24020007

Kistan, A., Kanchana, V., Sakayasheela, L., Sumathi, J., Premkumar, A., Selvam, A. (2018). Titanium dioxide as a Catalyst for Photodegradation of Various Concentrations of Methyl Orange and Methyl Red dyes using Hg Vapour Lamp with Constant pH. Oriental Journal of Chemistry, 34(2). http://dx.doi.org/10.13005/ojc/340250

Ul Haq, A., Saeed, M., Khan, S.G. and Ibrahim, M. (2021). Photocatalytic applications of titanium dioxide (TiO2). Titanium Dioxide-Advances and Applications, 63–84.

Ahmad, W., Kalra, D. (2020). Green synthesis, characterization and anti microbial activities of ZnO nanoparticles using Euphorbia hirta leaf extract. Journal of King Saud University-Science, 32(4), 2358–2364. https://doi.org/10.1016/j.jksus.2020.03.014

Ahmad, W., Singh, A., Jaiswal, K.K., Gupta, P. (2021). Green synthesis of photocatalytic TiO 2 nanoparticles for potential application in photochemical degradation of ornidazole. Journal of Inorganic and Organometallic Polymers and Materials, 31, 614–623. https://doi.org/10.1007/s10904-020-01703-6

Khashan, Kh. S., Ghassan, M., Sulaiman, F. A. A., Salim Albukhaty, M. A. I., Al-Muhimeed, T., AlObaid, A. A. (2021). Antibacterial activity of TiO2 nanoparticles prepared by one-step laser ablation in liquid. Applied Sciences, 11(10), 4623. https://doi.org/10.3390/app11104623

Yaqoob, A. A., Ahmad, H., Parveen, T., Ahmad, A., Oves, M., Ismail, I. M. I., Qari, H. A., Umar, K., Mohamad Ibrahim, M.N. (2020). Recent advances in metal decorated nanomaterials and their various biological applications: A review. Front Chem., 8, 1–23. https://doi.org/10.3389/fchem.2020.00341.

Singh, J., Dutta, T., Kim, K.-H., Rawat, M., Samddar, P., Kumar, P. (2018). Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. Journal of nanobiotechnology, 16(1), 1–24. https://doi.org/10.1186/s12951-018-0408-4

Vijayakumar, S., Malaikozhundan B., Saravanakumar, K., Durán-Lara, E. F., Wang, M.-H., Vaseeharan, B. (2019). Garlic clove extract assisted silver nanoparticle–Antibacterial, antibiofilm, antihelminthic, anti-inflammatory, anticancer and ecotoxicity assessment. Journal of Photochemistry and Photobiology B: Biology, 198, 111558. https://doi.org/10.1016/j.jphotobiol.2019.111558

Lee, S. Y., Dooho, K., Sehee, J., Hoang, T. D., Joon, H. K. (2020). Photocatalytic degradation of rhodamine B dye by TiO2 and gold nanoparticles supported on a floating porous polydimethylsiloxane sponge under ultraviolet and visible light irradiation. ACS omega, 5(8), 4233–4241. https://doi.org/10.1021/acsomega.9b04127

Murugadoss, G., Kumar, D.D., Kumar, M.R., Venkatesh,N., Sakthivel, P. (2021). Silver decorated CeO2 nanoparticles for rapid photocatalytic degradation of textile rose bengal dye. Scientific Reports, 11(1), 1080. https://doi.org/10.1038/s41598-020-79993-6

Sundaram, P., Shunmuga, T., Sangeetha, S., Rajakarthihan, R., Vijayalaksmi, A., Elangovan, G. Arivazhagan. (2020). XRD structural studies on cobalt doped zinc oxide nanoparticles synthesized by coprecipitation method: Williamson-Hall and size-strain plot approaches. Physica B: Condensed Matter, 595, 412342. https://doi.org/10.1016/j.physb.2020.412342

Bagheri, S., Kamyar Sh., Abd Hamid, Sh. B. (2013). Synthesis and characterization of anatase titanium dioxide nanoparticles using egg white solution via sol-gel method. Journal of Chemistry, 2013. http://dx.doi.org/10.1155/2013/848205

Jalali, E., Maghsoudi, Sh., Noroozian, E. (2020). A novel method for biosynthesis of different polymorphs of TiO2 nanoparticles as a protector for Bacillus thuringiensis from Ultra Violet. Scientific Reports, 10(1), 426. https://doi.org/10.1038/s41598-019-57407-6

Rastogi, L., Arunachalam, J. (2012). Microwave-assisted green synthesis of small gold nanoparticles using aqueous garlic (Allium sativum) extract: their application as antibiotic carriers. International Journal of Green Nanotechnology, 4(2), 163–173. https://doi.org/10.1080/19430892.2012.676926

Akilan, S., Prabakar, К. (2018). Spectral studies and antibacterial activity of Garlic (Allium sativum L.). Journal of Emerging Technologies and Innovative Research, 5(7), 452–457.

Saravanan, S., Dubey, R. S. (2021). Optical and morphological studies of TiO2 nanoparticles prepared by sol–gel method. Materials Today: Proceedings, 47, 1811–1814, https://doi.org/10.1016/j.matpr.2021.03.207

Praveen, P., Viruthagiri, G., Mugundan, S., Shanmugam, N. (2014). Structural, optical and morphological analyses of pristine titanium di-oxide nanoparticles–Synthesized via sol–gel route. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 117, 622–629. http://dx.doi.org/10.1016/j.saa.2013.09.037

Goutam, S. P., Saxena, G., Singh, V., Yadav, A. K., Bharagava, R. N.,. Thapa. K. B (2018). Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chemical Engineering Journal, 336, 386–396. https://doi.org/10.1016/j.cej.2017.12.029

Shanavas, S., Priyadharsan, A., Karthikeyan, S., Dharmaboopathi, K., Ragavan, I., Vidya, C., Acevedo, R., Anbarasana, P. M. (2020). Green synthesis of titanium dioxide nanoparticles using Phyllanthus niruri leaf extract and study on its structural, optical and morphological properties. Materials Today: Proceedings, 26, 3531–3534. https://doi.org/10.1016/j.matpr.2019.06.715

Maryani, E., Nurjanah, N. S., Hadisantoso, E. P., Wijayanti, R. B. (2020). The Effect of TiO2 additives on the antibacterial properties (Escherichia coli and Staphylococcus aureus) of glaze on ceramic tiles. In IOP Conference Series: Materials Science and Engineering, 980(1), 012011. https://doi.org/10.1088/1757-899X/980/1/012011

Rajakumar, G., Rahuman, A.A., Roopan, S. M., Gopiesh, V., Khanna, G. E., Kamaraj, C., Zahir, A. A., Velayutham, K. (2012). Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 91, 23–29. https://doi.org/10.1016/j.saa.2012.01.011

Priyanka, K. P., Sukirtha, T. H., Balakrishna, K. M., Varghese, T. (2016). Microbicidal activity of TiO2 nanoparticles synthesised by sol–gel method. IET nanobiotechnology, 10(2), 81–86. https://doi.org/10.1049/iet-nbt.2015.0038

Bahjat, H. H., Ismail, R. A., Sulaiman, G. M., Jabir, M. S. (2021). Magnetic field-assisted laser ablation of titanium dioxide nanoparticles in water for anti-bacterial applications. Journal of Inorganic and Organometallic Polymers and Materials, 31, 3649–3656. https://doi.org/10.1007/s10904-021-01973-8

Slavin, Y. N., Bach, H. (2022). Mechanisms of Antifungal Properties of Metal Nanoparticles. Nanomaterials, 12(24), 4470. https://doi.org/10.3390/nano12244470.

Gupta, V. K. (2009). Application of low-cost adsorbents for dye removal–a review. Journal of environmental management, 90(8), 2313–2342. 10.1016/j.jenvman.2008.11.017

Hassan, M. G., Wassel, M. A., Gomaa, H. A., Elfeky, A. S. (2023). Adsorption of Rose Bengal dye from waste water onto modified biomass. Scientific Reports, 13(1), 14776. https://doi.org/10.1038/s41598-023-41747-5

Shimi, A. K., Ahmed, H. M., Wahab, M., Snehlata, K., Wabaidur, S. M., Eldesoky, G. E., Islam, M. A., Rane, K. P. (2022). Synthesis and applications of green synthesized TiO2 nanoparticles for photocatalytic dye degradation and antibacterial activity. Journal of Nanomaterials, 2022(1), 7060388. https://doi.org/10.1155/2022/7060388

Ajmal, A., Majeed, I., Malik, R. N., Idriss, H.,. Nadeem M.A. (2014). Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. RSC Adv, 4, 37003–37026. https://doi.org/10.1039/C4RA06658H

Downloads

Published

2025-07-15

Issue

Section

Physical and inorganic chemistry