GREEN SYNTHESIS OF TiO2 NANOPARTICLES: A PROMISING TOOL FOR WASTEWATER TREATMENT
DOI:
https://doi.org/10.15421/jchemtech.v33i2.319532Keywords:
TiO2 nanoparticles, Allium sativum, anti-bacterial, antifungal activity, Photodegradation, organic dyesAbstract
Non-biodegradable organic pollutants, such as textile dyes, pose significant risks to human health and the environment. Photocatalysis offers a sustainable and cost-effective solution for degrading these pollutants while simultaneously preventing microbial contamination. This study investigates the photocatalytic and antimicrobial activities of green TiO₂ NPs synthesized using an aqueous extract of Allium sativum (garlic). XRD analysis confirmed the anatase phase with an average crystallite size of 52 nm, while FTIR identified the characteristic Ti-O-Ti vibrational band at 470 cm⁻¹. The NPs exhibited a band gap of 3.05 eV, UV absorbance at 337 nm, and a spherical morphology with slight agglomeration, as observed by FESEM. Antibacterial activity was demonstrated against Streptococcus pneumoniae and Proteus vulgaris, while antifungal activity was observed against Aspergillus niger and Rhizopus sp. Photocatalytic degradation achieved efficiencies of 78 % for Methylene Blue and 91 % for Rose Bengal, with kinetic rate constants of 0.008 min⁻¹ and 0.013 min⁻¹, respectively. These findings highlight the potential of green TiO₂ NPs as a cost-effective approach for environmental remediation and microbial control.
References
Kovács, I., Veréb, G., Kertész, S., Hodúr, C. and László, Z., (2018). Fouling mitigation and cleanability of TiO2 photocatalyst-modified PVDF membranes during ultrafiltration of model oily wastewater with different salt contents. Environmental Science and Pollution Research, 25, 34912–34921. https://doi.org/10.1007/s11356-017-0998-7
Ambade, B., Kumar, A., Gautam, S. (2024). Sustainable solutions: reviewing the future of textile dye contaminant removal with emerging biological treatments. Limnological Review, 24(2), 126. https://doi.org/10.3390/limnolrev24020007
Kistan, A., Kanchana, V., Sakayasheela, L., Sumathi, J., Premkumar, A., Selvam, A. (2018). Titanium dioxide as a Catalyst for Photodegradation of Various Concentrations of Methyl Orange and Methyl Red dyes using Hg Vapour Lamp with Constant pH. Oriental Journal of Chemistry, 34(2). http://dx.doi.org/10.13005/ojc/340250
Ul Haq, A., Saeed, M., Khan, S.G. and Ibrahim, M. (2021). Photocatalytic applications of titanium dioxide (TiO2). Titanium Dioxide-Advances and Applications, 63–84.
Ahmad, W., Kalra, D. (2020). Green synthesis, characterization and anti microbial activities of ZnO nanoparticles using Euphorbia hirta leaf extract. Journal of King Saud University-Science, 32(4), 2358–2364. https://doi.org/10.1016/j.jksus.2020.03.014
Ahmad, W., Singh, A., Jaiswal, K.K., Gupta, P. (2021). Green synthesis of photocatalytic TiO 2 nanoparticles for potential application in photochemical degradation of ornidazole. Journal of Inorganic and Organometallic Polymers and Materials, 31, 614–623. https://doi.org/10.1007/s10904-020-01703-6
Khashan, Kh. S., Ghassan, M., Sulaiman, F. A. A., Salim Albukhaty, M. A. I., Al-Muhimeed, T., AlObaid, A. A. (2021). Antibacterial activity of TiO2 nanoparticles prepared by one-step laser ablation in liquid. Applied Sciences, 11(10), 4623. https://doi.org/10.3390/app11104623
Yaqoob, A. A., Ahmad, H., Parveen, T., Ahmad, A., Oves, M., Ismail, I. M. I., Qari, H. A., Umar, K., Mohamad Ibrahim, M.N. (2020). Recent advances in metal decorated nanomaterials and their various biological applications: A review. Front Chem., 8, 1–23. https://doi.org/10.3389/fchem.2020.00341.
Singh, J., Dutta, T., Kim, K.-H., Rawat, M., Samddar, P., Kumar, P. (2018). Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. Journal of nanobiotechnology, 16(1), 1–24. https://doi.org/10.1186/s12951-018-0408-4
Vijayakumar, S., Malaikozhundan B., Saravanakumar, K., Durán-Lara, E. F., Wang, M.-H., Vaseeharan, B. (2019). Garlic clove extract assisted silver nanoparticle–Antibacterial, antibiofilm, antihelminthic, anti-inflammatory, anticancer and ecotoxicity assessment. Journal of Photochemistry and Photobiology B: Biology, 198, 111558. https://doi.org/10.1016/j.jphotobiol.2019.111558
Lee, S. Y., Dooho, K., Sehee, J., Hoang, T. D., Joon, H. K. (2020). Photocatalytic degradation of rhodamine B dye by TiO2 and gold nanoparticles supported on a floating porous polydimethylsiloxane sponge under ultraviolet and visible light irradiation. ACS omega, 5(8), 4233–4241. https://doi.org/10.1021/acsomega.9b04127
Murugadoss, G., Kumar, D.D., Kumar, M.R., Venkatesh,N., Sakthivel, P. (2021). Silver decorated CeO2 nanoparticles for rapid photocatalytic degradation of textile rose bengal dye. Scientific Reports, 11(1), 1080. https://doi.org/10.1038/s41598-020-79993-6
Sundaram, P., Shunmuga, T., Sangeetha, S., Rajakarthihan, R., Vijayalaksmi, A., Elangovan, G. Arivazhagan. (2020). XRD structural studies on cobalt doped zinc oxide nanoparticles synthesized by coprecipitation method: Williamson-Hall and size-strain plot approaches. Physica B: Condensed Matter, 595, 412342. https://doi.org/10.1016/j.physb.2020.412342
Bagheri, S., Kamyar Sh., Abd Hamid, Sh. B. (2013). Synthesis and characterization of anatase titanium dioxide nanoparticles using egg white solution via sol-gel method. Journal of Chemistry, 2013. http://dx.doi.org/10.1155/2013/848205
Jalali, E., Maghsoudi, Sh., Noroozian, E. (2020). A novel method for biosynthesis of different polymorphs of TiO2 nanoparticles as a protector for Bacillus thuringiensis from Ultra Violet. Scientific Reports, 10(1), 426. https://doi.org/10.1038/s41598-019-57407-6
Rastogi, L., Arunachalam, J. (2012). Microwave-assisted green synthesis of small gold nanoparticles using aqueous garlic (Allium sativum) extract: their application as antibiotic carriers. International Journal of Green Nanotechnology, 4(2), 163–173. https://doi.org/10.1080/19430892.2012.676926
Akilan, S., Prabakar, К. (2018). Spectral studies and antibacterial activity of Garlic (Allium sativum L.). Journal of Emerging Technologies and Innovative Research, 5(7), 452–457.
Saravanan, S., Dubey, R. S. (2021). Optical and morphological studies of TiO2 nanoparticles prepared by sol–gel method. Materials Today: Proceedings, 47, 1811–1814, https://doi.org/10.1016/j.matpr.2021.03.207
Praveen, P., Viruthagiri, G., Mugundan, S., Shanmugam, N. (2014). Structural, optical and morphological analyses of pristine titanium di-oxide nanoparticles–Synthesized via sol–gel route. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 117, 622–629. http://dx.doi.org/10.1016/j.saa.2013.09.037
Goutam, S. P., Saxena, G., Singh, V., Yadav, A. K., Bharagava, R. N.,. Thapa. K. B (2018). Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chemical Engineering Journal, 336, 386–396. https://doi.org/10.1016/j.cej.2017.12.029
Shanavas, S., Priyadharsan, A., Karthikeyan, S., Dharmaboopathi, K., Ragavan, I., Vidya, C., Acevedo, R., Anbarasana, P. M. (2020). Green synthesis of titanium dioxide nanoparticles using Phyllanthus niruri leaf extract and study on its structural, optical and morphological properties. Materials Today: Proceedings, 26, 3531–3534. https://doi.org/10.1016/j.matpr.2019.06.715
Maryani, E., Nurjanah, N. S., Hadisantoso, E. P., Wijayanti, R. B. (2020). The Effect of TiO2 additives on the antibacterial properties (Escherichia coli and Staphylococcus aureus) of glaze on ceramic tiles. In IOP Conference Series: Materials Science and Engineering, 980(1), 012011. https://doi.org/10.1088/1757-899X/980/1/012011
Rajakumar, G., Rahuman, A.A., Roopan, S. M., Gopiesh, V., Khanna, G. E., Kamaraj, C., Zahir, A. A., Velayutham, K. (2012). Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 91, 23–29. https://doi.org/10.1016/j.saa.2012.01.011
Priyanka, K. P., Sukirtha, T. H., Balakrishna, K. M., Varghese, T. (2016). Microbicidal activity of TiO2 nanoparticles synthesised by sol–gel method. IET nanobiotechnology, 10(2), 81–86. https://doi.org/10.1049/iet-nbt.2015.0038
Bahjat, H. H., Ismail, R. A., Sulaiman, G. M., Jabir, M. S. (2021). Magnetic field-assisted laser ablation of titanium dioxide nanoparticles in water for anti-bacterial applications. Journal of Inorganic and Organometallic Polymers and Materials, 31, 3649–3656. https://doi.org/10.1007/s10904-021-01973-8
Slavin, Y. N., Bach, H. (2022). Mechanisms of Antifungal Properties of Metal Nanoparticles. Nanomaterials, 12(24), 4470. https://doi.org/10.3390/nano12244470.
Gupta, V. K. (2009). Application of low-cost adsorbents for dye removal–a review. Journal of environmental management, 90(8), 2313–2342. 10.1016/j.jenvman.2008.11.017
Hassan, M. G., Wassel, M. A., Gomaa, H. A., Elfeky, A. S. (2023). Adsorption of Rose Bengal dye from waste water onto modified biomass. Scientific Reports, 13(1), 14776. https://doi.org/10.1038/s41598-023-41747-5
Shimi, A. K., Ahmed, H. M., Wahab, M., Snehlata, K., Wabaidur, S. M., Eldesoky, G. E., Islam, M. A., Rane, K. P. (2022). Synthesis and applications of green synthesized TiO2 nanoparticles for photocatalytic dye degradation and antibacterial activity. Journal of Nanomaterials, 2022(1), 7060388. https://doi.org/10.1155/2022/7060388
Ajmal, A., Majeed, I., Malik, R. N., Idriss, H.,. Nadeem M.A. (2014). Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. RSC Adv, 4, 37003–37026. https://doi.org/10.1039/C4RA06658H

Downloads
Published
Issue
Section
License
Copyright (c) 2025 Oles Honchar Dnipro National University

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).