SPECTROPHOTOMETRIC DETERMINATION OF THIAMINE USING OXIDATION REACTION WITH 18-MOLYBDODIPHOSPHATE

Authors

DOI:

https://doi.org/10.15421/jchemtech.v33i1.321291

Keywords:

spectrophotometry, thiamine, 18-molybdodiphosphate, pharmaceuticals

Abstract

A simple and highly sensitive method for the determination of thiamine in pharmaceuticals has been developed. It is based on the reaction between thiamine and 18-molybdodiphosphate heteropoly complex (18-MPC), which occurs at pH≈10, created by the addition of 10 % sodium carbonate. The reaction takes place at room temperature. 7-minutes are sufficient for the complete reduction of 18-MPC. The stability of heteropolyblue is limited and absorbance significantly decreases after 10 minutes of reaction. The optimal concentrations of 18-MPC and sodium carbonate were found to be 0.64 mM and 2.4 %, respectively. The ratio of 18-MPC to thiamine in the reaction is 2 : 1, which is shown by the method of continuous variations. Four electrons are accepted by the thiamine molecule during the oxidation of 18-MPC. In this case, a two-electron heteropolyblue is formed with an absorption maximum at 820 nm. The calibration dependence is linear in the range of thiamine concentrations from 2 to 80 μM with a detection limit of 0.8 μM using a cuvette with 0.5 cm path length. The proposed method has been successfully applied to the determination of vitamin B1 in three different pharmaceutical formulations containing other B vitamins, vitamin B6 and vitamin B12.

Author Biography

Andriy B. Vishnikin, Oles Honchar Dnipro National University

Заведующий кафедрой аналитической химии h-index (SCOPUS) = 8

References

Mrowicka, M., Mrowicki, J., Dragan, G., Majsterek, I. (2023). The importance of thiamine (vitamin B1) in humans. Bioscience Reports., 43(10), BSR20230374. https://doi.org/10.1042/BSR20230374

Cizmarova, I., Matuskova, M., Stefanik, O., Horniakova, A., Mikus, P., Piestansky, J. (2022). Determination of thiamine and pyridoxine in food supplements by a green ultrasensitive two-dimensional capillary electrophoresis hyphenated with mass spectrometry. Chem. Pap., 76(10), 6235–6245. https://doi.org/10.1007/s11696-022-02309-7

Verstraete, J., Stove, C. (2021). Patient-centric assessment of thiamine status in dried blood volumetric absorptive microsamples using LC–MS/MS analysis. Anal. Chem., 93(4), 2660–2668. https://doi.org/10.1021/acs.analchem.0c05018

Mathew, E. M., Sakore, P., Lewis, L., Manokaran, K., Rao, P., Moorkoth, S. (2019). Development and validation of a dried blood spot test for thiamine deficiency among infants by HPLC – fluorimetry. Biomed. Chromatogr., 33(11), e4668. https://doi.org/10.1002/bmc.4668

Rocchi, R., van Kekem, K., Heijnis, W. H., Smid, E. J. (2022). A simple, sensitive, and specific method for the extraction and determination of thiamine and thiamine phosphate esters in fresh yeast biomass. J. Microbiol. Methods, 201, 106561. https://doi.org/10.1016/j.mimet.2022.106561

Zhang, M., Zhang, C., Cai, H., Xie, Y., Sun, M., Liu, J., Liu, J., Yi, C., Fan, H., Yi, W., Lv, Z. (2025). Rapid determination of water-soluble vitamins in human serum by ultrahigh-performance liquid chromatography-tandem mass spectrometry. ACS Omega, 10, 885–891. https://doi.org/10.1021/acsomega.4c07968

Momeni, S., Jaberie, H. (2025). Developing a highly efficient fluorescence strategy for thiamine detection in real samples. J. Photochem. Photobiol. A, 459, 116064. https://doi.org/10.1016/j.jphotochem.2024.116064

Rocha, F. R. P., Filho, O. F., Reis, B. F. (2003). A multicommuted flow system for sequential spectrophotometric determination of hydrosoluble vitamins in pharmaceutical preparations. Talanta, 59, 191–200. https://doi.org/10.1016/S0039-9140(02)00477-0

Al-Ahmary, K. M. (2014). A simple spectrophotometric method for determination of thiamine (vitamin B1) in pharmaceuticals. Eur. J. Chem., 5(1), 81–84. https://doi.org/10.5155/eurjchem.5.1.81-84.881

Abo Dena, A. S., Ammar, A. A. (2019). H-point standard addition for simultaneous reagent-free spectrophotometric determination of B1 and B6 vitamins H-point standard addition for simultaneous reagent-free spectrophotometric determination of B1 and B6 vitamins. Spectrochim Acta A, 206, 491–497. https://doi.org/10.1016/j.saa.2018.08.047

Al Abachi, M. Q., Hadi, H. (2012). Normal and reverse flow injection–spectrophotometric determination of thiamine hydrochloride in pharmaceutical preparations using diazotized metoclopramide. J. Pharm. Anal., 2(5), 350–355. https://doi.org/10.1016/j.jpha.2012.04.005

Liu, S., Zhang, Z., Liu, Q., Luo, H., Zheng, W. (2002). Spectrophotometric determination of vitamin B 1 in a pharmaceutical formulation using triphenylmethane acid dyes. J. Pharm. Biomwd. Anal. 30, 685–694. https://doi.org/10.1016/S0731-7085(02)00356-4

Vishnikin, A. B., Miekh, Y. V., Denisenko, T. A., Kozhemiaka, V. G., Vishnikina, V. Yu., Al-Shwaiyat, M. K. E. A., Bazel, Ya. R., Andruch, V. (2018). Determination of thiamine as a complex with 11-molybdobismutho(III)phosphate in sequential injection Lab-at-valve system. Methods Objects Chem. Anal., 13, 51–59. https://doi.org/10.17721/moca.2018.55-63

Tsiganok, L. P., Vishnikin, A. B., Maksimovskaya, R. I. (1989). UV, IR, 71Ga and 17O NMR spectroscopic studies of 12-molybdogallate. Polyhedron, 23, 2739–2742. https://doi.org/10.1016/S0277-5387(00)80529-X

Vishnikin, A. B., Al-Shwaiyat, M. K. E. A., Bazel, Y. R., Andruch, V. (2007). Rapid, sensitive and selective spectrophotometric determination of phosphate as an ion associate of 12-molybdophosphate with Astra Phloxine. Microchim. Acta, 159, 371–378. https://doi.org/10.1007/s00604-007-0754-7

Biocic, M., Kraljevic, T., Spassov, T. G., Kukoc-Modun, L., Kolev, S. D. (2024). Sequential injection analysis method for the determination of glutathione in pharmaceuticals. Sensors, 24(17), 5677. https://doi.org/10.3390/s24175677

Mogashane, T. M., Mapazi, O., Motlatle, M. A., Mokoena, L., Tshilongo, J. (2025). A review of recent developments in analytical methods for determination of phosphorus from environmental samples. Molecules, 30(5), 1001. https://doi.org/10.3390/molecules30051001

Perez, M., Dominguez-Lopez, I., Lamuela-Raventos, R. (2023). The chemistry behind the Folin–Ciocalteu method for the estimation of (poly)phenol content in food: total phenolic intake in a mediterranean dietary pattern. J. Agric. Food Chem., 71, 17543–17553. https://doi.org/10.1021/acs.jafc.3c04022

Al-Shwaiyat, M., Denisenko, T., Miekh, Y., Vishnikin, A. (2018). Spectrophotometric determination of polyphenols in green teas with 18-molybdodiphosphate. Chem. Chem. Technol., 12(2), 135–142. https://doi.org/10.23939/chcht12.02.135

Vishnikin, A., Miekh, Yu., Denisenko, T., Bazel, Ya., Andruch, V. (2018). Use of sequential injection analysis with lab-at-valve and optical probe for simultaneous spectrophotometric determination of ascorbic acid and cysteine by mean centering of ratio kinetic profiles. Talanta, 188, 99–106. https://doi.org/10.1016/j.talanta.2018.05.056

Vishnikin, A. B., Sklenařova, H., Solich, P., Petrushina, G. A., Tsiganok, L. P. (2011). Determination of ascorbic acid with Wells-Dawson type molybdophosphate in sequential injection system. Anal. Lett., 44(1-3), 514–527. https://doi.org/10.1080/00032719.2010.500789

Vishnikin, A. B., Svinarenko, T. Ye., Sklenářová, H., Solich, P., Bazel, Ya. R., Andruch, V. (2010). 11-Molybdobismuthophosphate - a new reagent for the determination of ascorbic acid in batch and sequential injection systems. Talanta, 80, 1838–1845. https://doi.org/10.1016/j.talanta.2009.10.031

Vishnikin, A. B., Al-Shwaiyat, M. K. E. A., Petrushina, G. A., Tsiganok, L. P., Andruch, V., Bazel, Ya. R., Sklenarova, H., Solich, P. (2012). Highly sensitive sequential injection determination of p-aminophenol in paracetamol formulations with 18-molybdodiphosphate heteropoly anion based on elimination of Schlieren effect. Talanta, 96, 230–235. https://doi.org/10.1016/j.talanta.2012.02.049

Petrova, A., Ishimatsu, R., Nakano, K., Imato, T., Vishnikin, A. B., Moskvin, L. N., Bulatov, A. V. (2016). Flow-injection spectrophotometric determination of cysteine in biologically active dietary supplements. J. Anal. Chem., 71(2), 172–178. https://doi.org/10.1134/S1061934816020118

Downloads

Published

2025-04-15