SUBCRITICAL EXTRACTION OF BIOLOGICALLY ACTIVE SUBSTANCES FROM WHEAT BRAN
DOI:
https://doi.org/10.15421/jchemtech.v33i1.321987Keywords:
wheat bran, extraction; subcritical water; biologically active substances; extract; antioxidant properties.Abstract
Wheat bran (WB) is the main by-product in the grain processing industry and contains a large number of biologically active substances, which, unfortunately, are not used in the food industry today. The work is devoted to the study of the process of subcritical water extraction of WB. The aim of the study is to determine and scientifically substantiate the rational values of the parameters of subcritical extraction of biologically active substances from wheat bran: sugars, protein, phenols, and antioxidant properties. Methods. Liquid extracts were obtained on a laboratory installation based on a high-pressure reactor when varying the parameters in the following ranges: temperature – 140–180 °С; time – 3–18 min; fraction size – 0.25±0.05; 0.50±0.08 and 0.75±0.1 mm, hydraulic modulus – 1 : 10,
1 : 15, 1 : 20, 1 : 25 and pressure 5 MPa. Results. Empirical dependences of a number of indicators of subcritical wheat bran extracts on the parameters of the extraction process were experimentally obtained and their optimal values were determined: temperature, duration, hydraulic modulus, raw material fraction size and pressure. The influence of the extraction process parameters on the studied target substances was investigated; the values of the parameters were established (hydraulic modulus 1 : 20, PV fraction size 0.5 mm, pressure 5 MPa, temperature - 170 °С, extraction duration 12.0–14.9 min. depending on the target substance), at which the maximum values of the indicated indicators are achieved: sugar content – 317.9 mg/g CP; protein – 184.2 mg/g CP; total polyphenol content – 31.2 mg/g of CP and radical scavenging activity – 0.162 mmol/g of CP. Conclusions. The results obtained can be used to improve the technology for obtaining biologically active substances from PV using the subcritical water extraction method for further use in the food industry.
References
Guo, H., Wu, H., Sajid, A., Li, Z. (2022). Whole grain cereals: The potential roles of functional components in human health. Critical Reviews in Food Science and Nutrition. 62(30), 8388–8402. https://doi.org/10.1080/10408398.2021.1928596.
Papageorgiou, M., Skendi, A. (2018). Sustainable Recovery and Reutilization of Cereal Processing by-Products Introduction to Cereal Processing and by-Products. Sawston, United Kingdom: Woodhead Publishing Series in Food Science, Technology and Nutrition, Elsevier. https://doi.org/10.1016/B978-0-08-102162-0.00001-0.
Luithui, Y., Baghya Nisha, R., Meera, M.S. (2019). Cereal by-products as an important functional ingredient: Effect of processing. Journal of Food Science and Technology.;56(1), 1–11. https://doi.org/10.1007/s13197-018-3461-y.
Arzami, A.N., Ho, T.M., Mikkonen, K.S. (2022). Valorization of cereal by-product hemicelluloses: Fractionation and purity considerations. Food Research International, 151, 1–21. https://doi.org/10.1016/j.foodres.2021.110818.
Fărcaș, A. C., Socaci, S. A., Nemeș, S. A., Pop, O. L., Coldea, T. E., Fogarasi, M., & Biriș-Dorhoi, E. S. (2022). An update regarding the bioactive compound of cereal by-products: Health benefits and potential applications. Nutrients. 14(17), 1–19. https://doi.org/10.3390/nu14173470.
Salazar-lópez, N.J., Ovando-martínez, M., Domínguez-Аvila, J.A. (2020). Cereal/grain by-products. In: Campos-Vega R, Dave Oomah B, Vergara-Castañeda HA, editors. Food Wastes and by-Products: Nutraceutical and Health Potential. John Wiley & Sons Ltd. https://doi.org/10.1002/9781119534167.ch1.
Fărcaș, A., Drețcanu, G., Pop, T.D., Enaru, B., Socaci, S., Diaconeasa, Z. (2021). Cereal processing by-products as rich sources of phenolic compounds and their potential bioactivities. Nutrients. 13(11):1-17. https://doi.org/10.3390/nu13113934.
Alabiden Tlais, A.Z., Fiorino, G.M., Polo, A., Filannino, P., Di Cagno, R. (2020). High-value compounds in fruit, vegetable and cereal byproducts: An overview of potential sustainable reuse and exploitation. Molecules. 25, 1–27. https://doi.org/10.3390/molecules25132987
Koistinen, V.M., Tuomainen, M., Lehtinen, P., Peltola, P., Auriola, S., Jonsson, K., Hanhineva, К. (2020). Side-stream products of malting: A neglected source of phytochemicals. NPJ Science of Food. 4(1), 1–9. https://doi.org/10.1038/s41538-020-00081-0.
Roth, M., Jekle, M., Becker, T. (2019). Opportunities for upcycling cereal byproducts with special focus on Distiller’s grains. Trends in Food Science and Technology. 91, 282–293. https://doi.org/10.1016/j.tifs.2019.07.041.
Skendi, A., Zinoviadou, K.G., Papageorgiou, M., Roch, J.M. (2020). Advances on the valorisation and functionalization of by-products and wastes from cereal-based processing industry. Food. 9, 1–28. https://doi.org/10.3390/foods9091243.
Prückler, М., Siebenhandl-Ehn, S., Apprich, S., Höltinger, S., Haas, C., Schmid, E., Kneifel, W. (2014). Wheat bran - based biorefinery 1: Composition of wheat bran and strategies of functionalization. LWT Food Sci. Technol., 56(2), 211–221. https://doi.org/10.1016/j.lwt.2013.12.004.
Martín-Diana, A. B., Tomé-Sánchez, I., García-Casas, M. J., Martínez-Villaluenga, C., Frías, J., & Rico, D. (2021). A Novel Strategy to Produce a Soluble and Bioactive Wheat Bran Ingredient Rich in Ferulic Acid. Antioxidants, 10(6), 969; https://doi.org/10.3390/antiox10060969.
Qian, Li., Rui, Liu., Tao, W., Min, Z. (2017). Aggregation and rheological behavior of soluble dietary fibers from wheat bran. Food Research International. 102, 291–302. https://doi.org/10.1016/j.foodres.2017.09.064.
Kaprelyants, L., Pozhitkova, L., Buzhylov, M. (2019). Application of co-bioprocessing techniques (enzymatic hydrolysis and fermantation) for improving the nutritional value of wheat bran as food functional ingrediens. «EUREKA: Life Sciences». Food Science and Technology, 5, 31–45. https://doi.org/10.21303/2504-5695.2019.00992.
Cheng, Y., Xue, F., Yu, S., Du, S., Yang, Y. (2021). Subcritical Water Extraction of Natural Products. Molecules, 26(13), 4004; https://doi.org/10.3390/molecules26134004.
Sukmanov, V., Suprun, А. (2021). Extraction of biologically active substances from onion peel with the subcritical water in a static mode. Journal of Chemistry and Technologies. 29(2), 265–278. https://doi.org/10.15421/jchemtech.v29i2.225749.
Sukmanov, V., Kovalchuk, О. (2023). Influence of extraction parameters on the properties of subcritical water extracts of soybean meal. Journal of Chemistry and Technologies. 31(1), 72–81. https://doi.org/10.15421/jchemtech.v31i1.274376.
Sukmanov, V., Ukrainets, A., Zavyalov, V., Marynin, A. (2017). Research of extraction of biologically active substances from grape pomace by subcritical water. Eastern European Journal of Advanced Technology, 5(11), 70–80. https://doi.org/10.15587/1729-4061.2017.108992.
Yan, J.K., Wu, L.X., Cai, W.D., Xiao, G.S., Duan, Y., Zhang, H. (2019). Subcritical water extraction-based methods affect the physicochemical and functional properties of soluble dietary fibers from wheat bran. Food Chemistry. 298, 15, 124987. https://doi.org/10.1016/j.foodchem.2019.124987.
Yilmaz-Turan, S., Jiménez-Quero, A., Moriana, R., Arte, E., Katina, K., Vilaplana, F. (2020). Cascade extraction of proteins and feruloylated arabinoxylans from wheat bran. Food Chem. 15(333), 127491. https://doi.org/10.1016/j.foodchem.2020.127491.
Pietiäinen, S., Moldin, A., Ström, A., Malmberg, C., Langton, M. (2022). Effect of physicochemical properties, pre-processing, and extraction on the functionality of wheat bran arabinoxylans in breadmaking - A review. Food Chem. 30(383), 132584. https://doi.org/10.1016/j.foodchem.2022.132584.
Chen, Z.; Mense, A.L.; Brewer, L.R.; Shi, Y.-C. (2024). Wheat bran arabinoxylans: Chemical structure, extraction, properties, health benefits, and uses in foods. Comprehensive Reviews in Food Science and Food Safety, 23(3), e13366 https://doi.org/10.1111/1541-4337.13366.
Pazo-Cepeda, M.V., Aspromonte, S.G., Alonso, E. (2021). Extraction of ferulic acid and feruloylated arabinoxylo-oligosaccharides from wheat bran using pressurized hot water. Food Bioscience, 44(A), 101374. https://doi.org/10.1016/j.fbio.2021.101374.
Sidorova, L. P., Vishnikin, A. B., Sydorova, M. G. (2022). Simultaneous determination of synthetic food dyes in binary mixtures by mean centering and ratio difference methods. Journal of Chemistry and Technologies. 30(2), 298–306. https://doi.org/10.15421/jchemtech.v30i2.259255.
Airin, P., Islam, S. (2022). Measurement of Total Phenolics Using Modified Folin-Ciocalteu Method Processing. Journal of Agricultural, Environmental and Consumer Sciences, 22, 24–30.
Semeneh, S., Ammara, A., Kang, S.N. (2022). Exploration of the Antioxidant Chemical Constituents and Antioxidant Performance of Various Solvent Extracts of Eighteen Plants. Prev. Nutr. Food Sci. 27(2), 212–222. https://doi.org/10.3746/pnf.2022.27.2.212.
Lachos-Perez, D., Baseggio, A. M., MayangaTorres, P. C., Maróstica, M. R., Rostagno, M. A., Martínez, J., Forster-Carneiro, T. (2018) Subcritical water extraction of flavanones from defatted orange peel. J. Supercrit. Fluids, 138, 7–16. https://doi.org/10.1016/j.supflu.2018.03.015.
Zhang, J., Wen, C., Zhang, H., Duan, Y., Ma, H. (2020). Recent advances in the extraction of bioactive compounds with subcritical water: A review. Trends Food Sci. Technol. 95. 183–195. https://doi.org/10.1016/j.tifs.2019.11.018.
Cacace, J.E.; Mazza, G. (2003). Optimization of extraction of anthocyanins from black currants with aqueous ethanol. J. Food Sci. 68. 240–248. https://doi.org/10.1111/j.1365-2621.2003.tb14146.x.
Oancea, S. (2021). A Review of the Current Knowledge of Thermal Stability of Anthocyanins and Approaches to Their Stabilization to Heat. Antioxidants. 10(9), 1337. https://doi.org/10.3390/ antiox10091337.
Pazo-Cepeda, M.V., Aspromonte, S.G., Alonso, E. (2021). Extraction of ferulic acid and feruloylated arabinoxylo-oligosaccharides water. Food Bioscience. 44, Part A. 101374 https://doi.org/10.1016/j.fbio.2021.101374.
Alonso-Riaño, P., Ramos, C., Blanco, B., Trigueros, E., Sanz, M.T., Beltrán, S. (2021). Valorization of wheat bran by subcritical water fractionation https://riubu.ubu.es/bitstream/handle/10259/5856/Valorization_of_wheat_bran_by_subcritical.pdf?sequence=1&isAllowed=y
Álvarez-Casas, M., García-Jares, C., Llompart, M., Lores, M. (2014). Effect of experimental parameters in the pressurized solvent extraction of polyphenolic compounds from white grape marc. Food Chem. 157, 524–532. https://doi.org/10.1016/j.foodchem.2014.02.078.
Mokrani, A., Madani, K. (2016). Effect of solvent, time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L.) fruit. Sep. Purif. Technol. 162, 68–76. http://dx.doi.org/10.1016/j.seppur.2016.01.043.
Mustafa, A., Turner, C. (2011). Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review. Anal. Chim. Acta. 703, 8–18. http://dx.doi.org/10.1016/j.aca.2011.07.018.
Ross, C.F., Hoye, C., Fernandez-Plotka, V.C. (2011). Influence of Heating on the Polyphenolic Content and Antioxidant Activity of Grape Seed Flour. J. Food Sci. 76, 884–890. http://dx.doi.org/10.1111/j.1750-3841.2011.02280.x.
Shopska, V., Denkova-Kostova, R., Dzhivoderova-Zarcheva, M., Teneva, D., Denev, P., Kostov, G. (2021). Comparative Study on Phenolic Content and Antioxidant Activity of Different Malt Types. Antioxidants, 10, 1124. https://doi.org/10.3390/antiox10071124.
Mokrani, A., Madani, K. (2016). Effect of solvent, time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L.) fruit. Sep. Purif. Technol. 162, 68–76. https://doi.org/10.1016/j.seppur.2016.01.043.
Arvidsson, P., van Boekel, M.A.J.S., Skog, K., Jägerstad, M. (2005). Formation of Mutagenic Maillard Reaction Products. Mail. React. Foods Med. 219–224.
Kim, J.S.; Lee, Y.S. (2010). Characteristics and antioxidant activity of Maillard reaction products from fructose-glycine oligomer. Food Sci. Biotechnol. 19, 929–940. https://doi.org/10.1007/s10068-010-0131-x.
Hossain, M.B., Barry-Ryan, C., Martin-Diana, A.B., Brunton, N.P. (2011). Optimisation of accelerated solvent extraction of antioxidant compounds from rosemary (Rosmarinus officinalis L.), marjoram (Origanum majorana L.) and oregano (Origanum vulgare L.) using response surface methodology. Food Chem. 126, 339–346. https://doi.org/10.1016/j.foodchem.2010.10.076.
Kubátová, A., Lagadec, A.J., Miller, D.J., Hawthorne, S.B. (2001). Selective extraction of oxygenates from savory and peppermint using subcritical water. Flavour and Fragrance Journal. 16(1). 4–73. https://doi.org/10.1002/1099-1026(200101/02)16:1<64::AID-FFJ949>3.0.CO;2-D.
Kim, Y.-J., Choi, H.-J., Chung, M.-S., Ko, M.-J. (2022). Selective extraction of oxygenated terpene in caraway (Carum carvi L.) using subcritical water extraction (SWE) technique. Food Chemistry. Volume 381, 1. 132192. https://doi.org/10.1016/j.foodchem.2022.132192

Downloads
Published
Issue
Section
License
Copyright (c) 2025 Oles Honchar Dnipro National University

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).