SYNTHESIS OF N-ACYLOXY-1-(DIMETHOXYPHOSPHORYLOXY)BENZIMIDATES FROM N-ACYLOXY-N-CHLOROBENZAMIDES

Authors

  • Vasiliy G. Shtamburg Ukrainian State University of Science and Technologies, Scientific and Educational Institute “Ukrainian State Chemical and Technological University" , Ukraine https://orcid.org/0000-0001-9491-9429
  • Evgeniy A. Klots Ukrainian State University of Science and Technologies, Scientific and Educational Institute “Ukrainian State Chemical and Technological University" , Ukraine
  • Victor V. Shtamburg Ukrainian State University of Science and Technologies, Scientific and Educational Institute “Ukrainian State Chemical and Technological University" , Ukraine https://orcid.org/0000-0001-7734-0896
  • Andrey A. Anishchenko Oles Honchar Dnipro National University, Ukraine https://orcid.org/0000-0001-5437-9499
  • Svitlana V. Shishkina SSI Institute for Single Crystals, National Academy of Sciences of Ukraine, Institute of Organic Chemistry of National Academy of Sciences of Ukraine, Ukraine https://orcid.org/0000-0002-9986-9261
  • Alexander V. Mazepa A.V. Bogatsky Physico-Chemical Institute of National Academy of Sciences of Ukraine, Ukraine https://orcid.org/0000-0002-9628-7514
  • Svetlana V. Kravchenko Dnipro State Agrarian and Economic University, Ukraine https://orcid.org/0000-0003-2479-3562

DOI:

https://doi.org/10.15421/jchemtech.v33i2.323425

Keywords:

N-acyloxy-N-chlorobenzamides, trimethyl phosphite, N-acyloxy-1-(dimethoxyphosphoryloxy)benzimidates, synthesis, structure, XRD study, intramolecular N–O-migration of dimethoxyphosphoryl group

Abstract

Aim. The objective of this research was to investigate the potential interaction between N-acyloxy-N-chlorobenzamides and trialkyl phosphites, along with the characterization of the resulting products' structures. Methods. Employing techniques such as 1H, 31P and 13C NMR spectroscopy, mass spectrometry, and single crystal X-ray diffraction, we have proved that the reaction of N-acyloxy-N-chlorobenzamides with trimethyl phosphite in diethyl ether produces N-acyloxy-1-(dimethoxyphosphoryloxy)benzimidates. Our research demonstrates that the reaction between N-acyloxy-N-chlorobenzamides and trialkyl phosphites offers a novel approach to synthesize Z-N-acyloxy-1-(dialkoxyphosphoryloxy)benzimidates. This discovery unveils a significant chemical transformation of N-acyloxy-N-chlorobenzamides. The structure of N-acyloxy-1-(dimethoxyphosphoryloxy)benzimidates has been confirmed by 1H, 31P and 13C NMR spectroscopy, mass spectrometry, and XRD study. The study of the N-(4-nitrobenzoyloxy)-1-(dimethoxyphosphoryloxy)benzimidate structure has revealed that the N-(4-nitrobenzoyloxy)-1-(dimethoxyphosphoryloxy)benzimidate is the Z-isomer, with the dimethoxyphosphoryloxy moiety and the N-4-nitrobenzoyloxy group being cis-oriented to the N=C double bond. The ether moiety and the N=C double bond are coplanar, while the dimethoxyphosphoryl substituent is orthogonal to the plane of the N=C double bond. The interaction of N-acyloxy-N-chlorobenzamides with trimethyl phosphite has led to a new synthesis of Z-N-acyloxy-1-(dialkoxyphosphoryloxy)benzimidates. The new chemical properties of N-acyloxy-N-chlorobenzamides have been established. The X-ray study of Z-N-4-nitrobenzoyoxy-1-benzimidate has demonstrated the peculiarities of its structure. Notably, an intriguing phenomenon of nitrogen-to-oxygen migration of the dimethoxyphosphoryl group has been observed.

References

Oeser, P., Tobrman, T. (2024). Organophosphates as Versatile Substrates in Organic Synthesis. Molecules, 29(7), 1593−1637. https://doi.org/10.3390/molecules29071593

Chrobak, E., Bebenek, E., Kadela-Tomanek, M., Latocha, M., Jelsch, C., Wenger, E., Boryczka, S. Betulin (2016). Phoshonates; Synthesis, Structure, and Cytotoxic Activity. Molecules, 21(9), 1123-1136. https://doi.org/10.3390/molecules21091123

Shtamburg, V. G., Klots, E. A., Shtamburg, V. V., Anishchenko, A. A., Shishkina, S. V., Mazepa, A.V., Kravchenko, S. V. (2024). Synthesis N-Alkoxy-1-(dimethoxyphosphoryloxy)benzimidates from N-Alkoxy-N-chlorobenzamides. J. of Chemistry and Technologies, 32(3), 528−537.https://doi.org/10.15421/jchemtech.v32i3.298733

Plapinger, R. E., Wagner-Jauregg, T. (1953). A Nitrogen-to-Oxygen Phosphoryl Migration: Preparation of dl-Serinephosphoric and Threoninephosphoric Acid. J. Am. Chem. Soc., 75(22), 5757–5758. https://doi.org/10.1021/ja01118a524

Gao, X., Deng, H., Tang, G., Liu, Y., Xu, P., Zhao, Y. (2011). Intermolecular Phosphoryl Transfer of N-Phosphoryl Amino Acids. Eur. J. Org. Chem., (17), 3220−3228. https://doi.org/10.1002/ejoc.201100234

Shtamburg, V. G., Klots, E. A., Shtamburg, V. V., Anishchenko, A. A., Shishkina, S. V., Mazepa, A. V. (2023). Nucleophilic substitution at nitrogen atom. N-Alkoxy-N-(dimethoxyphosphoryl)ureas, synthesis and structure. J. Mol. Structure, 1277, 134865.https://doi.org/10.1016/j.molstruc.2022.134865

Shtamburg, V. G., Klots, E. A., Anishchenko, A. A., Shishkina, S. V., Mazepa, A.V., Kravchenko, S. V. (2024). Interaction of N-Alkoxy-N-chloro derivatives of amides, sulfonamides and ureas with trialkyl phosphites. XXVI Ukrainian Conference of Organic Chemistry and Biochemistry, Uzhgorod, 16-20 September 2024, Thesis, D-5. (In Ukrainian)

Shtamburg, V. G., Klots, E. A., Shtamburg, V. V., Anishchenko, A. A., Shishkina, S. V., Kravchenko, S. V. Mazepa, A.V. (2025). Dialkyl-N-Alkoxy-N-(4-toluenesulfonyl)phosphoramidates: Synthesis and Structure. Voprosy khimii I khimicheskoi tecknologii – Issues of Chemistry and Chemical Technology, 2025(2), 33-44.

Kravchenko, S. V. (2013). N-Chloro-N-benzoyloxybenzamide. Bull. Dnipropetrovsk Univ., Ser. Chem., 21(19), 61−65.https://doi.org/10.15421/08132119

Sheldrick, G. M. (2008). A short history of SHELX. Acta Cryst., Sect. A., A 64, 112−122. https://doi.org/10.1107/S0108767307043930

Pu, X., Li, Q., Lu, Z., Yang, X. (2016). N-Chloro-N-methoxybenzenesulfonamide: A Chlorinating Reagent. Eur. J. Org. Chem., (36), 5937−5940. https://doi.org/10.1002/ejoc.201601226

Wang Yu, Bi C., Kawamata Yu, Grant L. N., Samp L., Richardson P. F., Zhang S., Harper K. C., Palkowitz M. D., Vasilopoulos, A., Collins M. R., Oderinde, M. S., Tyrol, C. C., Chen, D., LaChapelle, E. A., Bailey, J. B., Qiao, J. X., Baran, P. S. (2024). Discovery of N−X anomeric amides as electrophilic halogenation reagents. Nature Chemistry, 16, 1539−1545. https://doi.org/10.1038/s41557-024-01539-4

Glover, S. A. (1998). Anomeric Amides – Structure, Properties and Reactivity. Tetrahedron, 54(26), 7229–7271. https://doi.org/10.1016/S0040-4020(98)00197-5

Shtamburg, V. G., Klots, E. A., Pleshkova, A. P., Avramenko, V. I., Ivonin, S. P., Tsygankov, A.V., Kostyanovsky, R. G. (2003). Geminal systems. 50. Synthesis and alcoholysis on N-acyloxy-N-alkoxy derivatives of ureas, carbamates and benzamides. Russ. Chem. Bull., Int. Ed., 52(10), 2251−2260. https://doi.org/10.1023/B:RUCB.0000011887.40529.b0

Glover, S. A., Rosser, A. A. (2018). Heteroatom Substitution at Amide Nitrogen – Resonance Reduction and HERON Reactions of Anomeric Amides. Molecules, 23(11), 2834. https://doi.org/10.3390/molecules23112834

Glover, S. A. (2009). N-Heteroatom-substituted hydroxamic esters, in The Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids. Eds Rappoport, Z., Liebman, J. F., John Wiley and Sons, New York. PATAI’S Chemistry of Funcional Groups, 839–923.https://doi.org/10.1002/9780470682531.pat0470

Shtamburg, V. G., Tsygankov, A. V., Shishkin, O. V., Zubatyuk, R. I., Uspensky, B. V., Shtamburg, V. V., Mazepa, A. V., Kostyanovsky, R .G. (2012). The properties and structure of N-chloro-N-methoxy-4-nitrobenzamide. Mendeleev Commun., 22(3), 164−166. https://doi.org/10.1016/j.mencom.2012.05.019.

Digianantonio, K. M., Glover, S. A., Johns, J .P., Rosser, A. A. (2011). Synthesis and termal decomposition of N,N-dialkoxyamides. Org. Biomol. Chem., 9, 4116−4126. https://doi.org./10.1039/C1OB00008J

Glover, S. A., White, J. M., Rosser, A. A., Digianantonio, K. M. (2011). Structure of N,N-Dialkoxyamides: Pyramidal Anomeric Amides with Low Amidicity. J. Org. Chem., 76 (23), 9757–9763. https://doi.org./10.1021/jo201856u

Glover, S. A., Rosser, A. A., Taherpour, A., Greatrex, B. (2014). Formation and HERON Reactivity of Cyclic N,N-Dialkoxyamides. Aust. J. Chem., 67(3), 507–520. https://doi.org./10.1071/CH13557

Downloads

Published

2025-07-15