SPECTRAL CHARACTERISTICS OF FLAVONOIDS OF ROBINIA PSEUDOACACIA L. AND ROBINIA HISPIDA L. FLOWERS
DOI:
https://doi.org/10.15421/jchemtech.v33i3.326311Keywords:
flavonoids, anthocyanins, flowers of black locust and bristly locust, aluminum oxide, chemisorption, reflectance spectra, colorimetryAbstract
The results of solid-phase analysis of flowers of common black locust (Robinia pseudoacacia L.) and bristly locust (Robinia hispida L.), which are used as dietary supplements for the creation of innovative food products and medicinal plant raw materials, are presented. It has been established that a combination of characteristics of reflectance spectra, the first derivative of spectral curves, and colorimetry, which determine the distinctive features of the flowers of these species, can be used for identification. A characteristic feature of the spectral characteristics of black locust flowers is the localization of UV-absorbing flavonoids in the surface tissues. The specificity of the color of the flowers of the bristly locust tree creates an accumulation of anthocyanin pigments, for which the dominance of the flavylic form in superposition with the copigmented form has been established, which leads to the perception of a purple color. Differentiation of the spectral reflectance curve of flowers proved to be an effective way to confirm this phenomen. The spectral approaches used expand the methodological basis of non-destructive analysis of raw materials of robinia flowers for the creation of innovative food products and the improvement of pharmacognostic studies. The ability to chemisorption of flavonoids from R. pseudoacacia flower extract on aluminum oxide was established, and a biohybrid material was obtained using a biocompatible sorbent. The obtained reflectance and colorimetric characteristics of the sorption interaction product confirmed the presence of adsorbed flavonoids. The proposed solid-phase analysis of a sorbent functionalized with biologically active substances can be used to control flavonoid compositions with a solid dispersion medium.
References
Takahashi, J. A., Rezende, F. A. G. G., Moura, M. A. F., Dominguete, L. C. B., Sande, D. (2020). Edible flowers: Bioactive profile and its potential to be used in food development. Food Res. Int., 129, 108868. https://doi.org/10.1016/j.foodres.2019.108868
Kumari, P., Bhargava, B. (2021). Phytochemicals from edible flowers: Opening a new arena for healthy lifestyle. J. Funct. Foods, 78, 104375. https://doi.org/10.1016/j.jff.2021.104375
Pensamiento-Niño, C. A., Castañeda-Ovando, A., Añorve-Morga, J., Hernández-Fuentes, A. D., Aguilar-Arteaga, K., Ojeda-Ramírez, D. (2024). Edible flowers and their relationship with human health: Biological activities. Food Rev. Int., 40(1), 620–639. https://doi.org/10.1080/87559129.2023.2182885
Stankov, S., Fidan, H., Ivanova, T., Stoyanova, A., Damyanova, S., Desyk, M. (2018). Chemical composition and application of flowers of false acacia (Robinia pseudoacacia L.). Ukr. Food J., 7(4), 577–588. https://doi.org/10.24263/2304-974X-2018-7-4-4
Uzelac, M., Sladonja, B., Šola, I., Dudaš, S., Bilic, J., Famuyide, I. M., McGaw, L. J., Eloff, J. N., Mikulic-Petkovsek, M., Poljuha, D. (2023). Invasive alien species as a potential source of phytopharmaceuticals: Phenolic composition and antimicrobial and cytotoxic activity of Robinia pseudoacacia L. leaf and flower Extracts. Plants, 12, 2715. https://doi.org/10.3390/plants12142715
Książkiewicz, M., Karczewska, M., Nawrot, F., Korybalska, K., Studzińska-Sroka, E. (2025). Traditionally used edible flowers as a source of neuroactive, antioxidant, and anti-inflammatory extracts and bioactive compounds: A narrative review. Molecules, 30(3), 677. https://doi.org/0.3390/molecules30030677
Tian, J., Gong, Y., Li, J. (2022). Nutritional attributes and phenolic composition of flower and bud of Sophora japonica L. and Robinia pseudoacacia L. Molecules, 27(24), 8932. https://doi.org/10.3390/molecules27248932
Hallmann, E. (2020). Quantitative and qualitative identification of bioactive compounds in edible flowers of black and bristly locust and their antioxidant activity. Biomolecules, 10, 1603. https://doi.org/10.3390/biom10121603
Ma, X. L., Chen, J. Z., Lu, X., Zhe, Y. T., Jiang, Z. B. (2021). HPLC coupled with quadrupole time of flight tandem mass spectrometry for analysis of glycosylated components from the fresh flowers of two congeneric species: Robinia hispida L. and Robinia pseudoacacia L. J. Sep. Sci., 44(7), 1537-1551. https://doi.org/10.1002/jssc.202001068
Demeshko, O. V., Kovalev, V. N. (2010). [Black locust. In Pharmaceutical encyclopedia] (2th ed.). Kyiv, Ukraine: MORION (in Ukrainian). https://www.pharmencyclopedia.com.ua/article/1125/robiniya
Rosu, A. F., Bita, A., Calina, D., Rosu, L., Zlatian, O., Calina, V. (2012). Synergic antifungal and antibacterial activity of alcoholic extract of the species Robinia pseudoacacia L. (Fabaceae). Eur. J. Hosp. Pharm., 19(2), 216–216. https://doi.org/10.1136/ejhpharm-2012-000074.344
Bratu, M. M., Birghila, S., Stancu, L. M., Mfflai, C. C., Emoke, P., Popescu, A., Radu, M. D., Zglimbea, L. (2021). Evaluation of the antioxidant, cytotoxic and antitumoral activities of a polyphenolic extract of Robinia pseudoacacia L. flowers. J. Sci. Arts, 21(2), 547–556. https://doi.org/10.46939/J.Sci.Arts-21.2-b04
Jurca, T., Pallag, A., Vicas, L., Marian, E., Muresan, M., Ujhelyi, Z., Feher, P., Bacskay, I. (2021). Formulation and antioxidant investigation of creams containing Robiniae pseudacaciae Flos L. ethanolic extract. Farmacia, 69(4), 697–704. https://doi.org/10.31925/farmacia.2021.4.9
Kowalczewski, P. Ł., Pauter, P., Smarzyński, K., Różańska, M. B., Jeżowski, P., Dwiecki, K., Mildner‐Szkudlarz, S. (2019). Thermal processing of pasta enriched with black locust flowers affect quality, phenolics, and antioxidant activity. J. Food Process. Preserv., 43(10), e14106. https://doi.org/10.1111/jfpp.14106
Iancu, M. L. (2021). Edible flowers in novel foods: primary studies in the manufacture of flower compote of acacia (Robinica pseudoacacia), rose (Rosa damascena) and elder (Sambucus nigra). J. Agroaliment. Processes Technol., 27(2), 164–171.
Matkovits, A., Nagy, K., Fodor, M., Jókai, Z. (2023). Analysis of polyphenolic components of Hungarian acacia (Robinia pseudoacacia) honey; method development, statistical evaluation. J. Food Compos. Anal., 120, 105336. https://doi.org/10.1016/j.jfca.2023.105336
Boškov, I. A., Savić, I. M., Grozdanić Stanisavljević, N. Đ., Kundaković-Vasović, T. D., Radović Selgrad, J. S., Savić Gajić, I. M. (2024). Stabilization of black locust flower extract via encapsulation using alginate and alginate–chitosan microparticles. Polymers, 16(5), 688. https://doi.org/10.3390/polym16050688
Wang, D., Zhang, H., Liao, X., Li, J., Zeng, J., Wang, Y., Li, M., Xu, J., Jin, P., Sheng, J. (2024). Oral administration of Robinia pseudoacacia L. flower exosome-like nanoparticles attenuates gastric and small intestinal mucosal ferroptosis caused by hypoxia through inhibiting HIF-1α-and HIF-2α-mediated lipid peroxidation. Journal of Nanobiotechnology, 22(1), 479. https://doi.org/10.1186/s12951-024-02663-6
Başoğlu, A. (2025). One‐step green hydrothermal‐assisted synthesis of carbon quantum dots from Robinia hispida L. flowers, and flourimetric detection of Au3+ ions in aqueous media. Luminescence, 40(2), e70099. https://doi.org/10.1002/bio.70099
Fedenko, V. S. (2022). [Chemisorption of flavonoids from canadian goldenrod on aluminum oxide]. J. Chem. Technol., 30(3), 340–348 (in Ukrainian). https://doi.org/10.15421/jchemtech.v30i3.262972
Fedenko, V. S. (2024). [Reflectance and colorimetric characteristics of metallocomplexes of flavonoids from canadian goldenrod]. J. Chem. Technol., 32(1), 65–74 (in Ukrainian). https://doi.org/10.15421/jchemtech.v32i1.262957
Lorenzo, P., Morais, M. C. (2023). Strategies for the management of aggressive invasive plant species. Plants, 12(13), 2482. https://doi.org/10.3390/plants12132482
Hlushchenko, L. A., Kutsenko, N. I. (2023). [Problems with identification of medicinal plants and medicinal plant raw materials]. J. Native Alien Plant Stud., 19, 38–52. (in Ukrainian). https://doi.org/10.37555/2707-3114.19.2023.293647
Dujmović, M., Radman, S., Opačić, N., Fabek Uher, S., Mikuličin, V., Voća, S., Šic Žlabur, J. (2022). Edible flower species as a promising source of specialized metabolites. Plants, 11(19), 2529. https://doi.org/10.3390/plants11192529
Fedenko, V. S. (2024). Spectral characteristics of protocyanin supramolecular pigment as pharmacognostic criteria of Centaurea cyanus L. flowers. J. Chem. Technol., 32(2), 256-266 (in Ukrainian). https://doi.org/10.15421/jchemtech.v32i2.298075
Fedenko, V. S. (2007). [Dose effect of cyanidin interaction with lead ions in roots of maize seedlings]. Ukrains' kyi Biokhimichnyi Zhurnal, 79(2), 24–29 (in Ukrainian).
Fedenko, V. S., Landi, M., Shemet, S. A. (2017). Detection of nickel in maize roots: A novel nondestructive approach by reflectance spectroscopy and colorimetric models. Ecol. Indic., 82, 463–469. https://doi.org/10.1016/j.ecolind.2017.07.021
Trouillas, P., Sancho-García, J. C., De Freitas, V., Gierschner, J., Otyepka, M., Dangles, O. (2016). Stabilizing and modulating color by copigmentation: Insights from theory and experiment. Chem. Rev., 116, 4937–4982. https://doi.org/10.1021/acs.chemrev.5b00507
Ohta, N., Robertson, A. (2006). Colorimetry: fundamentals and applications. John Wiley & Sons.
Fedenko, V. S. (2002). [Cooperation of carotenoid and phenolic pigments in flowers polychroism formation of cryptophyte]. Fiziologia i Biokhimia Kul'turnykh Rastenii, 34(3), 199-212. (in Russian).
Fedenko, V. S., Shemet, S. A., Guidi, L., Landi, M. (2020). Metal/metalloid-induced accumulation of phenolic accumulation in plants. In M. Landi, S. A. Shemet, V. S. Fedenko (Eds.), Metal toxicity in higher plants. N.Y., USA: Nova Science Publishers.
Bomba, M. Y., Zazulyak, T. S., Zhytnetskyi, I. V., Fedyna, L. O. (2024). [The content of essential and toxic microelements in nettle dioecious in the aspect of using the plant as food raw material]. J. Chem. Technol., 32(2), 417–422 (in Ukrainian). https://doi.org/10.15421/jchemtech.v32i2.299017
Carl, C., Landgraf, D., Van der Maaten-Theunissen, M., Biber, P., Pretzsch, H. (2017). Robinia pseudoacacia L. flowers analyzed by using an unmanned aerial vehicle (UAV). Remote Sens., 9(11), 1091. https://doi.org/10.3390/rs9111091
Atanasov, A. Z., Evstatiev, B. I., Vladut, V. N., Biris, S. S. (2024). A novel algorithm to detect white flowering honey trees in mixed forest ecosystems using UAV-based RGB imaging. AgriEngineering, 6(1), 95–112. https://doi.org/10.3390/agriengineering6010007
Colombo, M., Michels, L. R., Teixeira, H. F., Koester, L. S. (2022). Flavonoid delivery by solid dispersion: a systematic review. Phytochem. Rev., 21, 783–808. https://doi.org/10.1007/s11101-021-09763-3
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Oles Honchar Dnipro National University

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).